Journal of Soviet Mathematics

, Volume 17, Issue 5, pp 2083–2097 | Cite as

Remainder term in the Weyl-Selberg asymptotic formula

  • A. B. Venkov


One derives a refinement of the Wey1-Selberg asymptotic formula for an arbitrary Fuchsian group of the first kind with a noncompact fundamental domain.


Asymptotic Formula Fundamental Domain Remainder Term Fuchsian Group Arbitrary Fuchsian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. A. Hejhal, “The Selberg trace formula for PSL(2, R),” Vol. 1, Lect. Notes Math., No. 548, Springer-Verlag, Berlin (1976).Google Scholar
  2. 2.
    B. Randol, “The Riemann hypothesis for Selberg's zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator,” Trans. Am. Math. Soc.,236, No. 513, 209–223 (1978).Google Scholar
  3. 3.
    A. Selberg, Harmonic Analysis. Part 2. Vorlesungsniederschrift, Göttingen (1954).Google Scholar
  4. 4.
    A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,” J. Indian Math. Soc.,20, No. 1–3, 47–87 (1956).Google Scholar
  5. 5.
    T. Kubota, Elementary Theory of Eisenstein Series, Halsted Press, New York (1973).Google Scholar
  6. 6.
    L. D. Faddeev, “Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane,” Tr. Mosk. Mat. Obshch.,17, 323–349 (1967).Google Scholar
  7. 7.
    L. D. Faddeev, A. B. Venkov and V. L. Kalinin, “A nonarithmetic derivation of the Selberg formula,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,31, 5–42 (1973).Google Scholar
  8. 8.
    A. B. Venkov and A. I. Vinogradov, “The asymptotic distribution of the norms of hyperbolic classes and spectral characteristics of parabolic forms of weight zero for a Fuchsian group,” Dokl. Akad. Nauk SSSR,243, No. 6, 1373–1376 (1978).Google Scholar
  9. 9.
    E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, Oxford (1939).Google Scholar
  10. 10.
    A. B. Venkov, “Selberg's trace formula for the Hecke operator generated by an involution,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 3, 484–499 (1978).Google Scholar
  11. 11.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford (1951).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. B. Venkov

There are no affiliations available

Personalised recommendations