Current Microbiology

, Volume 11, Issue 4, pp 227–229 | Cite as

Growth of acetotrophic, methane-producing bacteria in a pH auxostat

  • Kevin R. Sowers
  • Michael J. Nelson
  • James G. Ferry

Abstract

Three acetotrophicMethanosarcina species, which included marine, nonmarine, and thermophilic strains, were grown on acetate in a 10-liter pH auxostat. Specific growth rates and molar growth yields were constant throughout growth. Cell yields were up to 18-fold greater than previously reported. These properties of the pH auxostat indicate that it is a preferred culture method for the biochemical study of methanogenesis from acetate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Baresi, L., Wolfe, R. S. 1981. Levels of coenzyme F420, coenzyme M, hydrogenase, and methyl-coenzyme M methylreductase in acetate-grownMethanosarcina. Applied and Environmental Microbiology41:388–391.PubMedGoogle Scholar
  2. 2.
    Blaut, M., Gottschalk, G. 1982. Effect of trimethylamine on acetate utilization byMethanosarcina barkeri. Archives of Microbiology133:230–235.Google Scholar
  3. 3.
    Bryant, M. P. 1972. Commentary on Hungate technique for culture of anaerobic bacteria. American Journal of Clinical Nutrition25:1324–1328.PubMedGoogle Scholar
  4. 4.
    Huser, B. A., Wuhrmann, K., Zehnder, A. J. B. 1982.Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Archives of Microbiology132:1–9.Google Scholar
  5. 5.
    Hutten, T. J., Bongaerts, H. C. M., Van der Drift, C., Vogels, G. D. 1980. Acetate, methanol, and carbon dioxide as substrates for growth ofMethanosarcina barkeri. Antonie van Leeuwenhoek Journal of Microbiology and Serology46:601–610.Google Scholar
  6. 6.
    Hutten, T. J., De Jong, M. H., Peeters, B. P. H., Van der Driff, C., Vogels, G. D. 1981. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts ofMethanosarcina barkeri. Journal of Bacteriology145:27–34.PubMedGoogle Scholar
  7. 7.
    Kohler, H.-P. E., Zehnder, A. J. B. 1984. Carbon monoxide dehydrogenase and acetate thiokinase inMethanothrix soehgenii. FEMS Microbiology Letters21:287–292.Google Scholar
  8. 8.
    Krzycki, J. A., Wolkin, R. H., Zeikus, J. G. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain ofMethanosarcina barkeri. Journal of Bacteriology149:247–254.PubMedGoogle Scholar
  9. 9.
    Mah, R. A., Smith, M. R., Baresi, L. 1978. Studies on an acetate-fermenting strain ofMethanosarcina. Applied and Environmental Microbiology35:1174–1184.PubMedGoogle Scholar
  10. 10.
    Mah, R. A., Smith, M. R., Ferguson, T., Zinder, S. 1981. Methanogenesis from H2-CO2, methanol, and acetate byMethanosarcina pp. 131–142. In Dalton, H. (ed.), Microbial growth on C-1 compounds. London: Heyden and Son.Google Scholar
  11. 11.
    Martin, G. A., Hempfling, W. P. 1976. A method for the regulation of microbial population density during continuous culture at high growth rates. Archives of Microbiology107:41–47.PubMedGoogle Scholar
  12. 12.
    Schauer, N. L., Ferry, J. G. 1980. Metabolism of formate inMethanobacterium formicicum. Journal of Bacteriology142:800–807.PubMedGoogle Scholar
  13. 13.
    Schönheit, P., Kristjansson, J. K., Thauer, R. K. 1982. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Archives of Microbiology132:285–288.Google Scholar
  14. 14.
    Smith, M. R., Mah, R. A. 1978. Growth and methanogenesis byMethanosarcina strain 227 on acetate and methanol. Applied and Environmental Microbiology36:870–879.PubMedGoogle Scholar
  15. 15.
    Smith, M. R., Mah, R. A. 1980. Acetate as a sole carbon and energy source for growth ofMethanosarcina strain 227. Applied and Environmental Microbiology39:992–999.Google Scholar
  16. 16.
    Sowers, K. R., Baron, S. F., Ferry, J. G. 1984.Methanosarcina acetivorans, sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Applied and Environmental Microbiology47:971–978Google Scholar
  17. 17.
    Sowers K. R., Johnson, J. L., Ferry, J. G. In press. Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the familyMethanosarcinaceae. International Journal of Systematic Bacteriology.Google Scholar
  18. 18.
    Thauer, T., Jungermann, K., Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews41:100–180.PubMedGoogle Scholar
  19. 19.
    Walther, R., Fiebig, K., Fahlbusch, K., Caspari, D., Hippe, H., Gottschalk, G. 1981. Growth of methanogens on methylamines. pp. 146–151. In: Dalton, H. (ed.), Microbial growth on C-1 compounds. London: Heyden and Son.Google Scholar
  20. 20.
    Weimer, P. J., Zeikus, J. G. 1978. Acetate metabolism inMethanosarcina barkeri. Archives of Microbiology119:175–182.PubMedGoogle Scholar
  21. 21.
    Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1963. Formation of methane by bacterial extracts. Journal of Biological Chemistry238:2882–2886.PubMedGoogle Scholar
  22. 22.
    Zinder, S. H., Mah, R. A. 1979. Isolation and characterization of a thermophilic strain ofMethanosarcina unable to use H2−CO2 for methanogenesis. Applied and Environmental Microbiology38:996–1008.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Kevin R. Sowers
    • 1
  • Michael J. Nelson
    • 1
  • James G. Ferry
    • 1
  1. 1.Department of Anaerobic MicrobiologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations