New approaches to the axisymmetric vacuum

  • József Kadlecsik


The relativistic field equations of the axistationary vacuum are derived in Ernst coordinates in full detail. The derivation of the Kerr metric is given from the field equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The real and imaginary parts of the Ernst potential have been used by Hoenselaers for coordinatizing a Lorentzian 3-space. C. Hoenselaers: Prog. Theor. Phys. 60 (1978) 747Google Scholar
  2. 2.
    R. Geroch: J. Math. Phys. 12 (1971) 918Google Scholar
  3. 3.
    Z. Perjés: J. Math. Phys. 11 (1970) 3383Google Scholar
  4. 4.
    L.P. Eisenhart: Riemannian geometry. Princeton: Princeton University Press 1926Google Scholar
  5. 5.
    Z. Perjés: Astron. Nachr. 307 (1986) 321Google Scholar
  6. 6.
    Z. Perjés: Stationary vacuum space-times in Ernst coordinates, in Proceedings of the 4d Marcel Grossmann Meeting. R. Ruffini, (ed.) Amsterdam, New York: Elsevier 1986Google Scholar
  7. 7.
    Z. Perjés: Approaches to axisymmetry by man and machine, in Relativity today. Z. Perjés (ed.) Singapore: World Scientific, 1988Google Scholar
  8. 8.
    A. Hearn: Reduce user's manual. The Rand Co., Santa Monica, 1983Google Scholar
  9. 9.
    The class of fields for which the functions α and γ are analytic has been noted by D. Kramer. It can be shown that α,=2γ,1=0 alone suffice to characterize the Kerr metricGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • József Kadlecsik
    • 1
  1. 1.Central Research Institute for PhysicsBudapest 114Hungary

Personalised recommendations