Hydrogen bonding of urea-salicylic acid, U·SA

  • John Emsley
  • Naser M. Reza
  • Reiko Kuroda


Urea (U) and salicylic acid (SA) crystallize from aqueous solution as a 1∶1 adduct whose structure shows them to be linked via several weak and one strong hydrogen bonds. The ir spectra of the adduct and its deuterated counterpart have been analyzed and the stretching modes of the various hydrogen bonds identified. The1H and13C nmr. spectra are also interpreted to show that discrete adducts of U·SA persist in solution. On heating, U·SA decarboxylates at a much lower temperature than SA itself.


Hydrogen Physical Chemistry Aqueous Solution Urea Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aida, K. (1963)J. Inorg. Nucl. Chem. 25, 165.Google Scholar
  2. Aldrich Library of NMR Spectra (1983) 2 edn., Vol. I, p. 670B.Google Scholar
  3. Äyräs, P., Laatikainen, R., and Lötjönen, S. (1980)Org. Magn. Reson. 13, 387.Google Scholar
  4. Bacon, G. E., and Jude, R. J. (1973)Z. Kristallogr. 138, 19.Google Scholar
  5. Barry, J. E., Finkelstein, M., Hutchins, G. A., and Ross, S. D. (1983)Tetrahedron 39, 2151.Google Scholar
  6. Chang, C. (1976)J. Org. Chem. 41, 1881.Google Scholar
  7. Cochran, W. (1953)Acta Cryst. 6, 260.Google Scholar
  8. Colman, P. M., and Medlin, E. H. (1970)Acta Cryst. B 26, 1547.Google Scholar
  9. Downie, T. C., and Speakman, J. C. (1954)J. Chem. Soc., 787.Google Scholar
  10. Emsley, J. (1980)Chem. Soc. Rev. 9, 91.Google Scholar
  11. Emsley, J. (1984)Struct. Bond. 57, 147.Google Scholar
  12. Emsley, J., and Niazi, S. (1982)J. Chem. Soc. Dalton Trans., 2527.Google Scholar
  13. Glazunov, V. P., Mashkovshii, A. A., and Odinokv, S. E. (1975)Zh. Prik. Spektrusk,23, 169.Google Scholar
  14. Hadzi, D. (1965)Pure Appl Chem. 11, 435.Google Scholar
  15. Hadzi, D., and Kidric, J. (1976)Spetrochim. Acta 32, 693.Google Scholar
  16. Harkema, S., Bats, J. W., Weyenberg, A. W., and Feil, D. (1972)Acta Cryst. B 28, 1646.Google Scholar
  17. Harkema, S., and Ter Brake, J. H. M. (1979)Acta Cryst. B 35, 1011.Google Scholar
  18. Hayden, T. D., Kim, E. E., and Eriks, K. (1982)Inorg. Chem. 21, 4054.Google Scholar
  19. Hsu, I. N., and Gellert, R. W. (1983)J. Crystallogr. Spectrosc. Res. 13, 43.Google Scholar
  20. Kim, H. S., and Jeffrey, G. A. (1971)Acta Cryst. B 27, 1123.Google Scholar
  21. Kondo, M. (1972)Bull. Chem. Soc. Jpn. 45, 2790.Google Scholar
  22. Kumar, S. V., and Rao, L. M. (1982)Acta Cryst. B 38, 974.Google Scholar
  23. Lu, C. S., Hughes, E. W., and Giguere, P. A. (1941)J. Am. Chem. Soc. 63, 150.Google Scholar
  24. Marshall, J. L. (1983)Carbon-Carbon and Carbon-Proton NMR Couplings (Verlag Chemie International, Florida).Google Scholar
  25. McCullough, J. F., Sheridan, R. C., and Frederick, L. L. (1978)J. Agric. Food Chem. 26, 670.Google Scholar
  26. Molodkin, A. K., Ellert, G. V., Ivanova, O. M., and Shotnikova, G. A. (1967)Russ. J. Inorg. Chem. 12, 499.Google Scholar
  27. Mootz, D., and Albrand, K. R. (1972)Acta Cryst. B 28, 2459.Google Scholar
  28. Pryor, A. W., and Sanger, P. L. (1970)Acta Cryst. A 26, 543.Google Scholar
  29. Radell, J., Brodman, B. W., and Domanski, J. J., Jr. (1967)J. Phys. Chem. 71, 1596.PubMedGoogle Scholar
  30. Schaefer, T., Sebastian, R., Laatikainen, R., and Salman, S. R. (1984)Can. J. Chem. 62, 326.Google Scholar
  31. Scott, K. N. (1972)J. Am. Chem. Soc. 94, 8564.PubMedGoogle Scholar
  32. Wójcik, M. J. (1981)Chem. Phys. Lett. 83, 503.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • John Emsley
    • 1
  • Naser M. Reza
    • 1
  • Reiko Kuroda
    • 2
  1. 1.Department of ChemistryKing 's CollegeLondonEngland
  2. 2.Department of BiophysicsKing 's CollegeLondonEngland

Personalised recommendations