Advertisement

Mathematische Annalen

, Volume 112, Issue 1, pp 161–186 | Cite as

On the behaviour of an analytic function in the neighbourhood of its essential singularities

  • M. L. Cartwright
Article

Keywords

Analytic Function Essential Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1).
    The regionD is not necessarily simply-connected, and soZ may be an isolated boundary point, entirely surrounded by points ofD.Google Scholar
  2. 2).
    F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsingfors (1914), p. 13.Google Scholar
  3. 3).
    A. S. Besicovitch, Proc. London Math. Soc. (2)32 (1931), pp. 1–19.Google Scholar
  4. 4).
    W. Seidel, Trans. Amer. Math. Soc.36 (1934), pp. 201–226 (218).Google Scholar
  5. 5).
    See L. Bieberbach, Lehrbuch der Funktionentheorie2 (1927), p. 146.Google Scholar
  6. 6).
    M. L. Cartwright, Proc. Cambridge Phil. Soc.31 (1935) p. 26.Google Scholar
  7. 7).
    F. and M. Riesz, Verhandlungen des 4. skand. Math. Kongresses, Stockholm (1916).Google Scholar
  8. 8).
    See F. and M. Riesz, Verhandlungen des 4. skand. Math. Kongresses, Stockholm § 4.4.Google Scholar
  9. 9).
    R. Nevanlinna, Compt. Rend.199 (1934), pp. 512–515 and p. 548. [Added in the proofs] See also verhandlungen des 8. skand. Math. Kongresses Stockholm (1934), pp. 116–133. Theorem 1 on page 129 of the latter is false in the form stated. For an analytic function which is not a constant omits a set of values of positive harmonic measure near any pole or regular point. A single point is obviously a set of harmonic measure zero; and so we have a contradiction. The proof holds for the theorem as stated in Comptes Rendus; but I do not see how to modify it for a similar theorem IIc in § 5.2 of this paper holds if the setE is of harmonic measure zero with respect toevery region, but not if the set is of absolute harmonic measure zero in the sense of Nevanlinna.Google Scholar
  10. 10).
    See § 5.2. R. Nevanlinna, Compt. Rend.199 (1934), pp. 512–515Google Scholar
  11. 11).
    F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helaingfors, 1914, p. 27.Google Scholar
  12. 12).
    R. Nevanlinna, Commentarii Math. Helvetici2 (1930), pp. 236–252.Google Scholar
  13. 13).
    J. E. Littlewood, Journal of London Math. Soc.2 (1927), pp. 172–176.Google Scholar
  14. 14).
    See L. S. Bosanquet and M. L. Cartwright, Math. Zeitschr.37 (1933). p. 188–189. Theorem V.Google Scholar
  15. 15).
    W. Seidel, Trans. Amer. Math. Soc.34 (1932) p. 18, und36 (1934) p. 213.Google Scholar
  16. 16).
    N. Lusin and J. Privaloff, Ann. Scientifiques de l'Ecole Normale sup. (3)42 (1925) pp. 143–191.Google Scholar
  17. 18).
    See G. Julia, Leçons sur les fonctions uniformes (Paris 1923), Chap. I.Google Scholar
  18. 19).
    See L. Bieberbach. Lehrbuch der Funktionentheorie, II (1927), p. 266. The restriction α≦1/2 is only required to make 5/4αп<п, so that the contour used in this particular argument does not cross itself.Google Scholar
  19. 20).
    A. Plessner, Journ. f. Math.158 (1927), p. 219.Google Scholar
  20. 21).
    L. Ahlfors, Soc. Sci. Fen. Commentationes Phys. Math.5, 16 (1931), pp. 1–19.Google Scholar
  21. 22).
    —See § 2.1..Google Scholar
  22. 23).
    See G. Julia, Leçons sur les fonctions uniformes, Paris (1923) Chap. II.Google Scholar
  23. 24).
    A. Hurwitz.-R. Courant, Funktionentheorie, Berlin (1929) p. 432. See also J. E. Littlewood, Proc. London Math. Soc. (2)23 (1924), p.489.Google Scholar
  24. 25).
    A. S. Besicovitch, Proc. London Math. Soc. (2)32 (1931), pp. 1–19.Google Scholar
  25. 26).
    See W. Seidel, Trans. Amer. Math. Soc.36 (1934).Google Scholar
  26. 37).
    See § 4.4. W. Seidel, Trans. Amer. Math. Soc.36 (1934).Google Scholar
  27. 28).
    Compare R. Nevanlinna, Comptes Rendus199 (1934), pp. 512–515 and 548. See footnote R. Nevanlinna, Compt. Rend.199 (1934), pp. 512–515Google Scholar
  28. 29).
    W. Seidel, Trans. Amer. Math. Soc.36 (1934), p. 228.Google Scholar
  29. 30).
    See the theorem of R. Nevanlinna quoted in § 2. 1.Google Scholar

Copyright information

© Springer-Verlag 1936

Authors and Affiliations

  • M. L. Cartwright
    • 1
  1. 1.Cambridge(England)

Personalised recommendations