On the role of the higgs mechanism in present electroweak precision tests

  • S. Dittmaier
  • C. Grosse-Knetter
  • D. Schildknecht


Based on the observablesMW, Γ l ,s W −2 (M Z 2 ), we evaluate the parameters Δx, Δy and ε at one-loop level within an electroweak massive vector-boson theory, which does not employ the Higgs mechanism. The theoretical results are consistent with the experimental ones on Δx, Δy, ε. The theoretical prediction for Δy coincides with the standard-model one (apart from numerically irrelevant terms which vanish forMH→∞). Nonrenormalizability only affects Δx and ε, which differ from the standard-model results by the replacement logMH→log Λ for a heavy Higgs mass,MH (where Λ denotes an effective UV cut-off).


Field Theory Elementary Particle Quantum Field Theory Theoretical Result Theoretical Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Dittmaier, K. Kolodziej, M. Kuroda and D. Schildknecht, Nucl. Phys. B426 (1994) 249; D. Schildknecht, report at the XXIXth Rencontres de Moriond, March 1994, BI-TP 94/18Google Scholar
  2. 2.
    LEP collaborations, La Thuile and Moriond Conferences, March 1994 SLD collaboration, La Thuile and Moriond Conferences, March 1994Google Scholar
  3. 3.
    M. Bilenky, K. Kolodziej, M. Kuroda and D. Schildknecht, Phys. Lett. B319 (1993) 319Google Scholar
  4. 4.
    S.L. Glashow, Nucl. Phys. B22 (1961) 579Google Scholar
  5. 5.
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; A. Salam, in Elementary Particle Theory, ed. N. Svartholm (Almqvist and Wiksell, Stockholm, 1968), p. 367Google Scholar
  6. 6.
    H. Burkhard, F. Jegerlehner, G. Penso and C. Verzegnassi, Z. Phys. C43 (1989) 497Google Scholar
  7. 7.
    P.Q. Hung and J.J. Sakurai, Nucl. Phys. B143 (1978) 81; J.D. Bjorken, Phys. Rev. D19 (1979) 335Google Scholar
  8. 8.
    M. Kuroda, F.M. Renard and D. Schildknecht, Phys. Lett. B183 (1987) 366; C. Bilchak and D. Schildknecht, Z. Phys. C47 (1990) 595; J.L. Kneur and D. Schildknecht, Nucl. Phys. B357 (1991) 357Google Scholar
  9. 9.
    T. Appelquist and C. Bernard, Phys. Rev. D22 (1980) 200; A.C. Longhitano, Nucl. Phys. B188 (1981) 118Google Scholar
  10. 10.
    M.J. Herrero and E.R. Morales, Nucl. Phys. B418 (1994) 431Google Scholar
  11. 11.
    E.C.G. Stueckelberg, Helv. Phys. Acta 11 (1938) 299; 30 (1956) 209Google Scholar
  12. 12.
    T. Kunimasa and T. Goto, Progr. Theor. Phys. 37 (1967) 425; T. Sonoda and S.Y. Tsai, Prog. Theor. Phys. 71 (1984) 878; C. Grosse-Knetter and R. Kögerler, Phys. Rev. D48 (1993) 2865Google Scholar
  13. 13.
    P.W. Higgs, Phys. Rev. 145 (1966) 1156; T.W. Kibble, Phys. Rev. 155 (1967) 1554Google Scholar
  14. 14.
    J. van der Bij and M. Veltman, Nucl. Phys. B231 (1984) 205.Google Scholar
  15. 15.
    Veltman, Acta Phys. Pol. B8 (1977) 475Google Scholar
  16. 16.
    G. 'tHooft, Nucl. Phys. B33 (1971) 173; B35 (1971) 167Google Scholar
  17. 17.
    G. Altarelli, R. Barbieri and F. Caravaglios, Nucl. Phys. B405 (1993) 3Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • S. Dittmaier
    • 1
  • C. Grosse-Knetter
    • 1
  • D. Schildknecht
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of BielefeldBielefeldGermany

Personalised recommendations