Advertisement

Zeitschrift für Physik C Particles and Fields

, Volume 59, Issue 4, pp 641–645 | Cite as

Analytic regularization and minimal subtraction for ϕ 4 4 with flow equations

  • Christoph Kopper
  • Vladimir A. Smirnov
Article

Abstract

In this paper we show how results on the behaviour of analytically regularized Green functions which traditionally required detailed inspection of general Feynman diagrams, can be obtained straightforwardly, when combining this regularization with flow equations. In particular we prove the existence of the analytic minimal subtraction scheme. For simplicity we restrict to massive Euclidean ϕ 4 4 .

Keywords

Field Theory Elementary Particle Quantum Field Theory Green Function Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Polchinski: Nucl. Phys. B231 (1984) 269–295Google Scholar
  2. 2.
    N.N. Bogoliubov, O.S. Parasiuk: Acta Math. 97 (1957) 227Google Scholar
  3. 3.
    K. Hepp: Commun. Math. Phys. 2 (1966) 301Google Scholar
  4. 4.
    W. Zimmermann: Commun. Math. Phys. 15 (1969) 208Google Scholar
  5. 5.
    P. Breitenlohner, D. Maison: Commun. Math. Phys. 52 (1977) 39; Commun. Math. Phys. 52 (1977) 55Google Scholar
  6. 6.
    E. Speer: J. Math. Phys. 9 (1968) 1404Google Scholar
  7. 7.
    G. 'tHooft, M. Veltman: Nucl. Phys. B61 (1973) 455; C.G. Bollini, J.J. Giambiagi: Nuovo Cimento 12B (1972) 20; V.A. Smirnov: Renormalization and asymptotic expansions, chapter 9. Basel: Birkhäuser 1991Google Scholar
  8. 8.
    G. Keller, C. Kopper, M. Salmhofer: Helv. Physica Acta 65 (1992) 31Google Scholar
  9. 9.
    G. Keller, C. Kopper: Commun. Math. Phys. 148 (1992) 445Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Christoph Kopper
    • 1
  • Vladimir A. Smirnov
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany

Personalised recommendations