Advertisement

Communications in Mathematical Physics

, Volume 68, Issue 1, pp 69–82 | Cite as

Transmission coefficient and heat conduction of a harmonic chain with random masses: Asymptotic estimates on products of random matrices

  • Theo Verheggen
Article

Abstract

We find upper and lower bounds for the transmission coefficient of a chain of random masses. Using these bounds we show that the heat conduction in such a chain does not obey Fourier's law: For different temperatures at the ends of a chain containingN particles the energy flux falls off likeN−1/2 rather thanN−1.

Keywords

Neural Network Fourier Statistical Physic Complex System Lower Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casher, A., Lebowitz, J.L.: J. Math. Phys.12, 1701 (1971)Google Scholar
  2. 2.
    Rubin, R.J., Greer, W.L.: J. Math. Phys.12, 1686 (1971)Google Scholar
  3. 3.
    O'Connor, A.J., Lebowitz, J.L.: J. Math. Phys.15, 692 (1974)Google Scholar
  4. 4.
    Pastur, L.A., Feldman, E.P.: Sov. Phys. JETP40, 241 (1975)Google Scholar
  5. 5.
    O'Connor, A.J.: Commun. Math. Phys.45, 63 (1975)Google Scholar
  6. 6.
    Papanicolau, G.C.: On the instability of the random harmonic oscillator. Preprint (1978)Google Scholar
  7. 7.
    Spohn, H., Lebowitz, J.L.: Commun. Math. Phys.54, 97 (1977)Google Scholar
  8. 8.
    Matsuda, M., Ishii, K.: Suppl. Prog. Theor. Phys.45, 56 (1970)Google Scholar
  9. 9.
    Payton, D.N., Rich, M., Visscher, W.M.: Phys. Rev.160, 706 (1967)Google Scholar
  10. 10.
    Keller, J.B., Papanicolau, G.C., Weilenmann, J.: Commun. Pure Appl. Math.31, 583 (1978)Google Scholar
  11. 11.
    Papanocilau, G.C.: Unpublished notes (1976)Google Scholar
  12. 12.
    Yoshioka, Y.: Proc. Jpn. Acad.49, 665 (1973)Google Scholar
  13. 13.
    Furstenberg, H.: Trans. A.M.S.108, 377 (1963)Google Scholar
  14. 14.
    Doob, J.L.: Stochastic processes. New York: Wiley 1953Google Scholar
  15. 15.
    Gikhman, I.I., Skorokhod, A.V.: Introduction to the theory of random processes. Philadelphia, London, Toronto: Saunders 1969Google Scholar
  16. 16.
    Krein, M.G., Rutman, M.A.: Usp. Mat. Nauk.23, 3 (1948) (A.M.S Transl. no. 26 (1950))Google Scholar
  17. 17.
    Visscher, W.M.: Prog. Theor. Phys.46, 729 (1971)Google Scholar
  18. 18.
    Visscher, W.M.: Methods Comput. Phys.15, 371 (1976)Google Scholar
  19. 19.
    Goldshtein, I.Ya, Molchanov, S.A., Pastur, L.A.: Funct. Anal. Appl.11, 1 (1977)Google Scholar
  20. 20.
    Ruelle, D.: Ann. N.Y. Acad. Sci. Conf. on Bifurcation (1978). In pressGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Theo Verheggen
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations