Zeitschrift für Physik C Particles and Fields

, Volume 57, Issue 4, pp 671–675 | Cite as

The refractive properties of the gluon plasma in SU(2) gauge theory

  • V. Goloviznin
  • H. Satz


The deconfined phase in finite temperature SU(2) gauge theory shows clear interaction effects in the temperature range 1≦T/Tc≦2. The interaction measure Δ≡(ɛ−3P)/T4, defined in terms of the energy density ɛ and the pressureP, peaks at some temperatureT above the critical temperatureTc and is different from zero in the entire temperature interval mentioned. High statistics lattice calculations provide numerical results for the pressureP and the entropy densitys≡(ɛ+P)/T. We interpret these results in terms of an ideal gas of quasi-gluons propagating in a refractive medium. The refractive properties of the medium are parametrized in terms of a temperature-dependent effective massM(T) of the excitations, which is determined from the lattice data. It shows a quite non-trivial behaviour:M(T) decreases fromT=Tc untilT≃2Tc; beyond this point it starts increasing again, and at high temperatures it approaches the perturbative thermal massM(T)∼gT.


Entropy Energy Density Elementary Particle Gauge Theory Temperature Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Polónyi, K. Szlachányi: Phys. Rev. Lett. 110B (1982) 395Google Scholar
  2. 2.
    B. Svetitsky, L.G. Yaffe: Nucl. Phys. 210B (1982) 423Google Scholar
  3. 3.
    J. Engels, J. Fingberg, M. Weber: Nucl. Phys. B332 (1990) 737Google Scholar
  4. 4.
    F. Karsch: Z. Phys. C38 (1988) 147Google Scholar
  5. 5.
    M.I. Gorenstein, O.A. Mogilevsky: Z. Phys. C38 (1988) 161Google Scholar
  6. 6.
    J. Engels et al.: Z. Phys. C42 (1989) 341; J. Engels: private communicationGoogle Scholar
  7. 7.
    J. Engels et al.: Phys. Lett. B252 (1990) 625Google Scholar
  8. 8.
    D.H. Rischke et al.: Phys. Lett. B237 (1990) 153Google Scholar
  9. 9.
    M.I. Gorenstein, O.A. Mogilevsky, S. Mrówczyński: Phys. Lett. B246 (1990) 200Google Scholar
  10. 10.
    D.H. Rischke et al.: Phys. Lett. 278 (1992) 19Google Scholar
  11. 11.
    M.I. Gorenstein, W. Greiner, S. Mrówczyński: Heavy quark potentials in the gluon plasma: analysis of the singlet and octet channels. Frankfurt Preprint UFTP-301/1992Google Scholar
  12. 12.
    J.I. Kapusta: Screening of static QED, electric fields in hot QCD, Minnesota Preprint 1992Google Scholar
  13. 13.
    See e.g.: C. DeTar: Phys. Rev. D32 (1985) 276; Phys. Rev. D37 (1987) 2328; K. Born et al.: Phys. Rev. Lett. 67 (1991) 302; V. Koch et al.: Stony Brook Preprint SUNY-NTG-92-4, 1992; G.E. Brown et al.: Stony Brook Preprint SUNY-NTG-92-06, 1992; S. Gupta: Phys. Lett. B288 (1992) 92; G. Boyd, S. Gupta, F. Karsch: CERN Preprint CERN-TH. 6482/92, 1992Google Scholar
  14. 14.
    H. Satz: Phys. Lett. 113B (1982) 245Google Scholar
  15. 15.
    J. Engels et al.: Nucl. Phys. B205 (1982) 545Google Scholar
  16. 16.
    J. Fingberg, U. Heller, F. Karsch: Scaling and asymptotic scaling in the SU(2) gauge theory. Bielefeld Preprint BI-TP 92-26, 1992Google Scholar
  17. 17.
    A. Irbäck et al.: Nucl. Phys. B363 (1991) 34Google Scholar
  18. 18.
    G. Altarelli: QCD and experiment: the status of α. CERN Preprint CERN-TH. 6623/92, 1992Google Scholar
  19. 19.
    J.I. Kapusta: Nucl. Phys. B148 (1979) 461Google Scholar
  20. 20.
    J. Zinn-Justin: Quantum field theory and critical phenomena. Oxford: Clarendon Press 1989Google Scholar
  21. 21.
    See e.g.: C. Michael: Glueballs and hybrid mesons. Liverpool Preprint LTH-286, 1992Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • V. Goloviznin
    • 1
  • H. Satz
    • 1
    • 2
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeld 1Germany
  2. 2.CERN Theory DivisionGeneva 23Switzerland

Personalised recommendations