Advertisement

Zeitschrift für Physik C Particles and Fields

, Volume 64, Issue 3, pp 413–425 | Cite as

Calculation of Feynman diagrams from their small momentum expansion

  • J. Fleischer
  • O. V. Tarasov
Theoratical Physics

Abstract

A new powerful method to calculate Feynman diagrams is proposed. It consists in setting up a Taylor series expansion in the external momenta squared (in general multivariable). The Taylor coefficients are obtained from the original diagram by differentiation and putting the external momenta equal to zero, which means a great simplification. It is demonstrated that it is possible to obtain by analytic continuation of the original series high precision numerical values of the Feynman integrals in the whole cut plane. For this purpose conformal mapping and subsequent resummation by means of Padé approximants or Levin transformation are applied.

Keywords

Elementary Particle Quantum Field Theory Series Expansion Taylor Series Analytic Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The LEP Collaborations, ALEPH, DELPHI, L3 and OPAL: Phys. Lett., B 276 (1992) 247; D.Schaile; preprint CERN-PPE/93-213, 1993, submitted to Fortschr. PhysGoogle Scholar
  2. 2.
    M. Consoli, W. Hollik, F. Jegerlehner: Phys. Lett. B 227 (1989) 167; W. Hollik: Talk given at the XVI International Symposium on Lepton-Photon Interactions. Cornell University, Ithaca, 1993; preprint MPI-Ph/93-83; F. Halzen, B.A. Kniehl, M.L. Stong: Z. Phys., C 58 (1993) 119Google Scholar
  3. 3.
    G.'t Hooft, M. Veltman: Nucl. Phys. B 153 (1979) 365; M. Veltman; FORMF, a CDC program for numerical evaluation of the formfactors, Utrecht, 1979 (unpublished); G.J. van Oldenborgh, J.A.M. Vermaseren: Z. Phys., C 46 (1990) 425; G.J. van Oldenborgh: Comput. Phys. Commun. 66 (1991) 1; D.B. Melrose: Nuovo Cimento., 40A (1965) 181; W.L. van Neerven, J.A.M. Vermaseren, Phys. Lett., B137 (1984) 241Google Scholar
  4. 4.
    A.V. Kotikov: Phys. Lett., B 254 (1991) 185; B259 (1991) 314; B267 (1991) 123; D. Kreimer: Phys. Lett. B292 (1992) 341; R.Scharf, J.B. Tausk, Nucl. Phys. B412 (1994) 523; F. A. Berends. J.B. Tausk: Nucl. Phys. B421 (1994) 456; F.A. Berends, M. Buza, M. Böhm, R. Scharf: to be published in Z. Phys. C.Google Scholar
  5. 5.
    A.I. Davydychev, V.A. Smirnov, J.B. Tausk: Nucl. Phys. B410 (1993) 325Google Scholar
  6. 6.
    A.I. Davydychev, B. Tausk: Nucl. Phys. B397 (1993) 123Google Scholar
  7. 7.
    D.J. Broadhurst, J. Fleischer, O.V. Tarasov: Z. Phys., C 60 (1993) 287Google Scholar
  8. 8.
    A.I. Davydychev: J. Phys., A25 (1992) 5587Google Scholar
  9. 9.
    G. Passarino, M. Veltman: Nucl. Phys. B160 (1979) 151Google Scholar
  10. 10.
    J. Fleischer, F. Jegerlehner, O.V. Tarasov: preprint BI-TP-94/05Google Scholar
  11. 11.
    F. Bollermann: Diplom-Arbeit, Universität Bielefeld (1984), unpublishedGoogle Scholar
  12. 12.
    G. Weiglein, R. Scharf, M. Böhm: Nucl. Phys. B416 (1994) 606Google Scholar
  13. 13.
    J. van der Bij, M. Veltman: Nucl. Phys. B231 (1984) 205Google Scholar
  14. 14.
    J. Fleischer, O.V. Tarasov, F. Jegerlehner, P. Raczka: Phys. Lett., B 293 (1992) 437Google Scholar
  15. 15.
    F. Hoogeveen: Nucl. Phys. B 259 (1985) 19Google Scholar
  16. 16.
    F.V. Tkachov: Phys. Lett. B100 (1981) 65; K.G. Chetyrkin, F.V. Tkachov: Nucl. Phys. B192 (1981) 159Google Scholar
  17. 17.
    D. Broadhurst: Z. Phys. C 54 (1992) 599Google Scholar
  18. 18.
    N.I. Ussyukina, A.I. Davydychev: Phys. Lett., B305 (1993) 136Google Scholar
  19. 19.
    A.C. Hearn: REDUCE User's manual, version 3.5 RAND publication CP78 (Rev.10/93)Google Scholar
  20. 20.
    S. Ciulli, J. Fischer: Nucl. Phys. 24 (1961) 465; W.R. Frazer: Phys. Rev. v. 123 (1961) 2180; J.S. Levinger, R.F. Peierls: Phys. Rev., v.134 (1964) B1341; D. Atkinson: Phys. Rev., v. 128 (1962) 1908Google Scholar
  21. 21.
    D. Shanks: J. Math. Phys. 34 (1955); P. Wynn: Math. Comp. 15 (1961) 151; G.A. Baker, P. Graves-Morris; Padé approximants, in Encyl. of math. and its appl., Vol. 13, 14, New York: Addison-Wesley 1981Google Scholar
  22. 22.
    D. Levin: Int. J. Comput. Math., B3 (1973) 371; E.J. Weniger: Comp. Phys. Rep., 10 (1989) 189; J. Grotendorst: Comp. Phys. Comm., 67 (1991) 325Google Scholar
  23. 23.
    G.A. Baker, Jr., J.L. Gammel, J.G. Wills: J. Math. Anal. Appl., 2 (1961) 405; G.A. Baker, Jr.: Essentials of Padé approximants. New York: Academic Press 1975Google Scholar
  24. 24.
    J.S.R. Chisholm: Math. Comput. 27 (1973) 841Google Scholar
  25. 25.
    A. Djouadi, M. Spira, P.M. Zerwas: Phys. Lett. B311 (1993) 255Google Scholar
  26. 26.
    K. Melnikov, O. Yakovlev: Phys. Lett., B312 (1993) 179Google Scholar
  27. 27.
    J. Fujimoto, Y. Shimizu, K. Kato, Y. Oyanagi: KEK preprint 92-213 (1993)Google Scholar
  28. 28.
    J. Fleischer: Nucl. Phys. B37 (1972) 59Google Scholar
  29. 29.
    D. Broadhurst: Z. Phys. C 47 (1990) 115Google Scholar
  30. 30.
    G. Källén, A. Sabry: K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 29 (1955) No. 17; J. Schwinger: Particles, sources and fields (Addison-Wesley, Reading, Mass., 1973) Vol. 2, p. 407; R. Barbieri, E. Remiddi: Nuovo Cimento, 13 (1973) 99Google Scholar
  31. 31.
    J. Fleischer: in: New Computing Techniques in Physics Research III, K.-H. Becks, D. Perret-Gallix (eds.) Singapore: World Scientific 1994 pg. 551Google Scholar
  32. 32.
    J.A.M. Vermaseren: Symbolic manipulation with FORM. Amsterdam: Computer Algebra Nederland, 1991Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. Fleischer
    • 1
  • O. V. Tarasov
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations