, Volume 36, Issue 1, pp 378–397 | Cite as

Heterozygous diploids ofPenicillium Chrysogenum and their segregation patterns

  • K. D. Macdonald
  • J. M. Hutchinson
  • W. A. Gillett


Several heterozygous diploids were made between genetically labelled derivatives of two strains ofPenicillium chrysogenum which produced relatively large amounts of penicillin and were of divergent lineage. The derivatives were labelled with spore colour and nutritional mutations. The diploids, although uniform in having wild type spore colour and being prototrophic, ranged from types having penicillin yields close to that of the original parents to types having less than a quarter of this titre level. Intermediate types had titre levels of about half to threequarters that of the high yielding diploids. Segregants were selected which had arisen naturally and also after nitrogen mustard treatment; most had the spore colour and auxotrophic phenotype of one or other immediate parent. From diploids of low and intermediate titre only haploid segregants with the genetical markers of one parent could be recovered with intact penicillin yield; haploids with the genetic markers of the other showed a marked reduction in yield. However, from diploids of high yield, both parental types could be recovered showing no loss of their original penicillin yield. The bearing of these results is discussed on the suggestion that different degrees of homozygosity between diploids may account for the titre variation observed. An alternative suggestion that mutations suppressive to penicillin titre might cause such variation is also considered.


Original Parent Segregation Pattern Intermediate Type Nitrogen Mustard Type Spore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alikhanian, S. I. (1962). Induced mutagenesis in the selection of microorganisms.Advanc. appl. Microbiol. 4: 1–50.Google Scholar
  2. Alikhanian, S. I. &S. I. Kameneva (1961). Hybridisation of highly active strains ofPenicillium chrysogenum.Sci. Rep. Ist. sup. Sanita 1: 454–458.PubMedGoogle Scholar
  3. Backus, M. P. &J. F. Stauffer (1955). The production and selection of a family of strains inPenicillium chrysogenum.Mycologia 47, 429–463.Google Scholar
  4. Caglioti, M. T. &G. Sermonti (1956). A study of the genetics of penicillinproducing capacity inPenicillium chrysogenum.J. gen. Microbiol. 14: 38–46.PubMedGoogle Scholar
  5. Forbes, E. (1959). Use of mitotic segregation for assigning genes to linkage groups inAspergillus nidulans.Heredity 13: 67–80.Google Scholar
  6. Fratello B., G. Morpurgo &G. Sermonti (1960). Induced somatic segregation inAspergillus nidulans.Genetics 45: 785–800.Google Scholar
  7. Kafer, E. (1961). The process of spontaneous recombination in vegetative nuclei ofAspergillus nidulans.Genetics 46: 1581–1609.PubMedGoogle Scholar
  8. Macdonald, K. D., J. M. Hutchinson &W. A. Gillett (1963a). Isolation of auxotrophs ofPenicillium chrysogenum and their penicillin yields.J. gen. Microbiol. 33: 365–374.PubMedGoogle Scholar
  9. Macdonald, K. D., J. M. Hutchinson &W. A. Gillett (1963b). Heterokaryon studies and the genetic control of penicillin and chrysogenin production inPenicillium chrysogenum.J. gen. Micrbiol. 33: 375–383.Google Scholar
  10. Macdonald, K. D., J. M. Hutchinson &W. A. Gillett (1963c). Formation and segregation of heterozygous diploids between a wild-type strain and derivatives of high penicillin yield inPenicillium chrysogenum.J. gen. Microbiol. 33: 385–394.PubMedGoogle Scholar
  11. Macdonald, K. D., J. M. Hutchinson &W. A. Gillett (1964). Properties of heterozygous diploids between strains ofPenicillium chrysogenum selected for high penicillin yield.Antonie van Leeuwenhoek 30: 209–224.PubMedGoogle Scholar
  12. Michie, D. (1953). Affinity: a new genetic phenomenon in the house mouse.Nature, London 171: 26–27.Google Scholar
  13. Morpurgo, G. &G. Sermonti (1959). Chemically-induced instabilities in a heterozygous diploid ofPenicillium chrysogenum.Genetics 44: 137–152.Google Scholar
  14. Pontecorvo, G. &E. Kafer (1958). Genetic analysis based on mitotic recombination.Advan. Genet. 9: 71–104.Google Scholar
  15. Pontecorvo, G. &J. A. Roper (1952). Genetic analysis without sexual reproduction by means of polyploidy inAspergillus nidulans. J. gen. Microbiol. 6: vii. abst.Google Scholar
  16. Pontecorvo, G. &J. A. Roper (1953). Diploids and mitotic recombination.Advan. Genet. 5: 218–233.Google Scholar
  17. Pontecorvo, G. &G. Sermonti (1953). Recombination without sexual reproduction inPenicillium chrysogenum.Nature, London 172: 126–127.Google Scholar
  18. Pontecorvo, G. &G. Sermonti (1954). Parasexual recombination inPenicillium chrysogenum.J. gen. Microbiol. 11: 94–104.PubMedGoogle Scholar
  19. Roegner, F. R., M. A. Stahmann &J. F. Stauffer (1954). Induction of variants inPenicillium chrysogenum by methyl bis (β-chloroethyl) amine.Am. J. Botany 41: 1–4.Google Scholar
  20. Sermonti, G. (1956). Complementary genes which affect penicillin yield.J. gen. Microbiol. 15: 599–608.PubMedGoogle Scholar
  21. Sermonti, G. (1959). Genetics of penicillin production.Ann. N.Y. Acad. Sci. 81: 950–973.PubMedGoogle Scholar
  22. Sermonti, G. (1961). Panel discussion. Microbiol genetics and its application to fermentations.Sci. Rep. Ist. sup. Sanita 1: 462.Google Scholar
  23. Sermonti, G. &G. Morpurgo (1959). Genetics ofPenicillium chrysogenum. IV. Effects of certain mutagenic agents on somatic segregation from heterozygous diploids.Sel. Sci. Pap. Ist. sup. Sanit. 2: 416–426.Google Scholar
  24. Shult, E. E., S. Desborough &C. Lindegren (1962). Preferential segregation inSaccharomyces.Genet. Res., Camb. 3: 196–209.Google Scholar
  25. Stahmann, M. A. &J. F. Stauffer (1947). Induction of mutants inP. notatum by methyl-bis (β-chloroethyl) amine.Science 106: 35–36.Google Scholar
  26. Stauffer, J. F. (1961). The use of ultraviolet radiation for mutations in antibiotic producing fungi.Sci. Rep. Ist. sup. Sanita 1: 472–483.PubMedGoogle Scholar
  27. Wallace, M. E. (1953). Affinity: a new genetic phenomenon in the house mouse.Nature, London 171: 27–28.Google Scholar

Copyright information

© Martinus Nijhoff 1965

Authors and Affiliations

  • K. D. Macdonald
    • 1
  • J. M. Hutchinson
    • 1
  • W. A. Gillett
    • 1
  1. 1.Microbiological Research EstablishmentPorton, SalisburyEngland

Personalised recommendations