Advertisement

Meccanica

, Volume 21, Issue 1, pp 30–37 | Cite as

A large displacement formulation for anisotropic beam analysis

  • Marco Borri
  • Teodoro Merlini
Article

Summary

The displacement of a beam can be conveniently resolved into a roto-translational section displacement and a section warping. The correct second order approximation of the strain is deduced accounting for large displacements and thus for large rotations. On the basis of displacement method, both linear and nonlinear formulations are given: the first one leads to the elastic section properties and to the correct characterization of section warping; the second one leads to the so-called geometric section stiffness, accounting for prestress. Both formulations are general with respect to elastic material properties, thus allowing to deal with aniso-tropic and unhomogeneous cross-sections. Elastic and geometric section rigidities here proposed can then be easily used in second order problems on beam frames: either initial buckling eigenvalue analyses, either large displacement incremental analyses.

Keywords

Large Displacement Section Property Large Rotation Eigenvalue Analysis Incremental Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

E' conveniente scomporre lo spostamento di un punto di una trave in una rototraslazione della sezione cui appartiene e in uno spostamento che deforma la sezione (in-gobbamento). Si deduce la corretta approssimazione al second'ordine della deformazione per grandi spostamenti e quindi grandi rotazioni. Vengono presentate sia la formulazione lineare che quella non lineare, basate sul metodo degli spostamenti: dalla prima si ottengono le caratteristiche elastiche della sezione e la corretta caratterizzazione dell'ingob-bamento; dalla seconda la cosiddetta rigidezza geometrica della sezione che tiene conto dello stato di presforzo. Entrambe le formulazioni sono generali per quanto riguarda le proprietà del materiale elastico, potendosi così considerare anche sezioni anisotrope e non omogenee. Le caratteristiche di rigidezza elastica e geometrica della sezione possono quindi facilmente essere usate in problemi del second'ordine su strutture a travi: sia analisi agli autovalori della stabilità, sia analisi incrementali con grandi spostamenti.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zienkiewicz O.C.,The Finite Element Method, McGraw-Hill (1976).Google Scholar
  2. [2]
    Belytschko T.,Hsieh B.J.,Nonlinear transient analysis of shells and solids of revolution by convected elements, AIAA paper No. 73–359, AIAA/ASME/SAE 14th. Structures, Struct. Dyn. Materials Conf., Williamsburg, Virginia (1973).Google Scholar
  3. [3]
    Belytschko T., Hsieh B.J.,Non-linear transient finite element analysis with convected coordinates, Int. J. Num. Meth. Engng7, 255–271 (1973).Google Scholar
  4. [4]
    Bathe K.J., Ramm E., Wilson E.L.,Finite element formulations for large deformation dynamic analysis, Int. J. Num. Meth Engng9, 353–386 (1975).Google Scholar
  5. [5]
    Bathe K.J., Ozdemir H.,Elastic-plastic large deformation stati and dynamic analysis, Comp. & Struct.6, 81–92 (1976).Google Scholar
  6. [6]
    Noor A.K., Hartley S.J.,Nonlinear shell analysis via mixed isoparametric elements, Comp. & Struct.7, 615–626 (1977).Google Scholar
  7. [7]
    Bathe K.J.,ADINA -A finite element program for automatic dynamic incremental nonlinear analysis, Acoustic and Vibration Lab. Report 82448-1, Dept. of Mech. Engng, M.I.T., Massachusetts (1975, 1978).Google Scholar
  8. [8]
    Bathe K.J., Bolourchi S.,A geometric and material nonlinear plate and shell element, Comp. & Struct.11, 23–48 (1980).Google Scholar
  9. [9]
    Tang S.C., Yeung K.S., Chon C.T.,On the tangent stiffness matrix in a convected coordinate system, Comp. & Struct.12, 849–856 (1980).Google Scholar
  10. [10]
    Brockman R.A.,Economical stiffness formulations for nonlinear finite elements, Comp. & Struct.18, 15–22 (1984).Google Scholar
  11. [11]
    Holden J.T.,On the finite deflections of thin beams, Int. J. Sol. Struct.8, 1051–1055 (1972).Google Scholar
  12. [12]
    Yang T.Y.,Matrix displacement solution to elastica problems of beams and frames, Int. J. Sol. Struct.9, 828–842 (1973).Google Scholar
  13. [13]
    Argyris J.H.,Dunne P.C.,A simple theory of geometrical stiffness with application to beam and shell problems, 2nd Int. Symp. Computing Meth. Appl. Sci. & Engng, Versailles, France (1975). ISD-Report No. 183, Univ. of Stuggart (1975).Google Scholar
  14. [14]
    Bathe K.J., Bolourchi S.,Large displacement analysis of three-dimensional beam structures, Int. J. Num. Meth. Engng14, 961–986 (1979).Google Scholar
  15. [15]
    Many Authors,Prediction of Aerodynamics Loads on Rotor-craft, AGARD CP-334 (1982).Google Scholar
  16. [16]
    Borri M.,Lanz M.,Mantegazza P.,Orlandi D.,Russo A.,STAHR: a program for stability and trim analysis of helicopter rotors, 8th European Rotorcraft Forum, Paper No. 4.2 (1982).Google Scholar
  17. [17]
    Borri M.,Contributo al calcolo della sezione di una trave col metodo degli spostamenti, Atti Ist. Ing. Aerospaz. Politecnico Milano, No. 129 (1979).Google Scholar
  18. [18]
    Giavotto V.,Borri M.,Puccinelli L.,Caramaschi V.,Mussi F.,Evaluation of section properties for hollow composite beams, 5th European Rotorcraft Forum, Paper No. 35 (1979).Google Scholar
  19. [19]
    Giavotto V., Borri M., Mantegazza P., Ghiringhelli G., Caramaschi V., Maffioli G.C., Mussi F.,Anisotropic beam theory and applications, Comp. & Struct.16, 403–413 (1983).Google Scholar
  20. [20]
    Timoshenko S.P.,Gere J.M.,Theory of Elastic Stability, McGraw-Hill (1961).Google Scholar
  21. [21]
    Washizu K.,Variational Methods in Elasticity and Plasticity, Pergamon Press (1968).Google Scholar
  22. [22]
    Fung Y.C.,Foundations of solid mechanics, Prentice-Hall (1965).Google Scholar

Copyright information

© Pitagora Editrice Bologna 1986

Authors and Affiliations

  • Marco Borri
    • 1
  • Teodoro Merlini
    • 2
  1. 1.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoItaly
  2. 2.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoItaly

Personalised recommendations