Algorithmica

, 4:599 | Cite as

Problems in geometric probing

  • Steven S. Skiena
Problem Section

References

  1. [1]
    R. Cole and C. K. Yap, Shape from Probing,Journal of Algorithms,8(1), pp. 19–38 (1987).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. T. Schwartz and M. Sharir, Some Remarks on Robot Vision, Courant Institute of Mathematical Sciences, New York University, New York (April 1984).Google Scholar
  3. [3]
    P. C. Gaston and T. Lozano-Perez, Tactile Recognition and Localization Using Object Models: The Case of Polyhedra on a Plane,IEEE Transactions on Pattern Analysis and Machine Intelligence,6, pp. 257–266 (May 1984).Google Scholar
  4. [4]
    W. E. L. Crimson and T. Lozano-Perez, Model-Based Recognition and Localization from Sparse Range or Tactile Data,Internationaljournal of Robotics Research,3, pp. 3–35 (Fall 1984).CrossRefGoogle Scholar
  5. [5]
    W. E. L. Grimson and T. Lozano-Perez, Localizing Overlapping Parts by Searching the Interpretation Tree,IEEE Transactions on Pattern Recognition and Machine Intelligence,9, pp. 469–482 (July 1987).CrossRefGoogle Scholar
  6. [6]
    R. E. Ellis, E. M. Riseman, and A. R. Hanson, Tactile Recognition by Probing: Identifying a Polygon on a Plane,Proceedings of the American Association of Artificial Intelligence Conference, pp. 632–637 (1986).Google Scholar
  7. [7]
    W. E. L. Crimson, Sensing Strategies for Disambiguating Among Multiple Objects in Known Poses,IEEE Journal of Robotics and Automation,2, pp. 196–213 (December 1986).Google Scholar
  8. [8]
    W. E. L. Grimson, The Combinatorics of Local Constraints in Model-Based Recognition and Localization from Sparse Data,Journal of the Association for Computing Machinery,33, pp. 658–686 (October 1986).Google Scholar
  9. [9]
    J. P. Greschak, Reconstructing Convex Sets, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA (1985).Google Scholar
  10. [10]
    S. S. Skiena, Geometric Probing, Doctoral Dissertation, Department of Computer Science, University of Illinois, Urbana, IL (1988).Google Scholar
  11. [11]
    L. S. Narasimhan, Recognition of Polyhedral Objects: Concepts and Algorithms, Doctoral Dissertation, School of Management Science, University of Texas, Dallas, TX (1988).Google Scholar
  12. [12]
    S. Y. R. Li, Reconstruction of Polygons from Projections,Information Processing Letters,28, pp. 235–240 (1988).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    H. J. Bernstein, Determining the Shape of a Convexn-sided Polygon by Using 2n +k Tactile Probes,Information Processing Letters,22, pp. 255–260 (1986).MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    B. K. Natarajan, On Detecting the Orientation of Polygons and Polyhedra,Proceedings of the Third ACM Symposium on Computational Geometry,3, pp. 146–152 (1987).Google Scholar
  15. [15]
    D. P. Dobkin, H. Edelsbrunner, and C. K. Yap, Probing Convex Polytopes,Proceedings of the 18th ACM Symposium on the Theory of Computing, pp. 424–432 (1986).Google Scholar
  16. [16]
    G. T. Herman,Image Reconstruction from Projections: the Fundamentals of Computerized Tomography, Academic Press, New York (1980).MATHGoogle Scholar
  17. [17]
    H. Edelsbrunner and S. S. Skiena, Probing Convex Polygons with X-rays,SIAM Journal on Computing,17, pp. 870–882 (1988).CrossRefMathSciNetGoogle Scholar
  18. [18]
    S. S. Skiena,Probing Convex Polygons with Half-Planes, submitted for publication.Google Scholar
  19. [19]
    P. C. Hammer, Problem 2, pp. 498–499 inProceedings of the Symposium on Pure Mathematics, vol. VII:Convexity, American Mathematical Society, Providence, RI (1963).Google Scholar
  20. [20]
    R. J. Gardner and P. McMullen, On Hammer's X-ray Problem,Journal of the London Mathematical Society,21, pp. 171–175 (1980).MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    K. J. Falconer, X-ray Problems for Point Sources,Proceedings of the London Mathematical Society (3),46, pp. 241–262 (1983).MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    K. J. Falconer, Hammer's X-Ray Problem and the Stable Manifold Theorem,Journal of the London Mathematical Society (2),28, pp. 149–160 (1983).MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    R. J. Gardner, Symmetrals and X-rays of Planar Convex Bodies,Archiv der Mathematik,41, pp. 183–189 (1983).MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    J. A. Reeds, L. A. Shepp, P. C. Fishburn, and J. C. Lagarias, Sets Uniquely Determined by Projections, AT&T Bell Laboratories, Murray Hill, NJ (July 1986).Google Scholar
  25. [25]
    S. S. Skiena, Counting the Number ofk- Projections of a Point Set,Journal of Combinatorial Theory, Series A (to appear).Google Scholar
  26. [26]
    S. S. Skiena, Reconstructing Graphs from Cut-set Sizes,Information Processing Letters (to appear).Google Scholar
  27. [27]
    F. Harary and E. M. Palmer,Graphical Enumeration, Academic Press, New York (1973).MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Steven S. Skiena
    • 1
  1. 1.Department of Computer ScienceState University of New YorkStony BrookUSA

Personalised recommendations