Medical Electron Microscopy

, Volume 31, Issue 3, pp 115–120 | Cite as

Gap junctions in health and disease

  • Masahito Oyamada
  • Yumiko Oyamada
  • Tetsuro Takamatsu


Gap junctions are communicating junctions that consist of hexameric proteins called connexins and mediate the exchange of low molecular weight metabolites and ions between cells in contact. It has long been hypothesized that gap junctional intercellular communication plays a crucial role in the maintenance of homeostasis, morphogenesis, cell differentiation, and growth control in multicellular organisms. Recent discoveries of human genetic disorders associated with mutations in connexin genes and experimental data on connexin knockout mice have provided direct evidence of this. Connexin 32 mutations cause X-linked Charcot-Marie-Tooth disease, an inherited peripheral demyelinating neuropathy. Connexin 26 mutations have been found in hereditary nonsyndromic sensorineural deafness. Connexin 43 knockout mice die shortly after delivery because of cardiac malformation. Connexin 32 knockout mice show high incidences of spontaneous and chemically induced liver tumors, and develop a late-onset progressive peripheral neuropathy analogous to human Charcot-Marie-Tooth disease. Female connexin 37 knockout mice are infertile as the result of abnormalities in ovarian follicular growth, control of luteinization, and oocyte maturation. Connexin 46 knockout mice develop nuclear cataracts. Further identification of connexin mutations in other human diseases and generation of mice with modified connexin genes will aid our understanding of the biology of gap junctions.

Key word

Connexin X-linked Charcot-Marie-Tooth disease Hereditary nonsyndromic sensorineural deafness Connexin knockout mice 


  1. 1.
    Paul DL (1995) New functions for gap junctions. Curr Opin Cell Biol 7:665–672.Google Scholar
  2. 2.
    Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388Google Scholar
  3. 3.
    Bone L, Deschênes S, Balice-Gordon R, Fischbeck K, Scherer S (1997) Connexin 32 and X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 4:221–230Google Scholar
  4. 4.
    Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262:2039–2042Google Scholar
  5. 5.
    Oh S, Ri Y, Bennett MV, Trexler EB, Verselis VK, Bargiello TA (1997) Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron 19:927–938Google Scholar
  6. 6.
    Omori Y, Mesnil M, Yamasaki H (1996) Connexin 32 mutations from X-linked Charcot-Marie-Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7:907–916Google Scholar
  7. 7.
    Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature (Lond) 387:80–83Google Scholar
  8. 8.
    Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Osborn AH, Dahl HHM, Middleton A, Houseman MJ, Dodé C, Marlin S, Boulila-ElGaïed A, Grati M, Ayadi H, BenArab S, Bitoun P, Lina-Granade G, Godet J, Mustapha M, Loiselet J, El-Zir É, Aubois A, Joannard A, Levilliers, J, Garabédian ÉN, Mueller RF, Gardner RJM, Petit C (1997) Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6:2173–2177Google Scholar
  9. 9.
    Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH (1995) Mutations of the Connexin 43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 332:1323–1329Google Scholar
  10. 10.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin 43. Science 267:1831–1834Google Scholar
  11. 11.
    Ewart JL, Cohen MF, Meyer RA, Huang GY, Wessels A, Gourdie RG, Chin AJ, Park SM, Lazatin BO, Villabon S, Lo CW (1997) Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development (Camb) 124:1281–1292Google Scholar
  12. 12.
    Nelles E, Butzler C, Jung D, Temme A, Gabriel HD, Dahl U, Traub O, Stumpel F, Jungermann K, Zielasek J, Toyka KV, Dermietzel R, Willecke K (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin 32-deficient mice. Proc Natl Acad Sci USA 93:9565–9570Google Scholar
  13. 13.
    Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin 32. Curr Biol 7:713–716Google Scholar
  14. 14.
    Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K, Zielasek J, Toyka KV, Suter U, Martini R (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17: 4545–4551Google Scholar
  15. 15.
    Yamasaki H, Naus CC (1996) Role of connexin genes in growth control. Carcinogenesis (Oxf) 17:1199–1213Google Scholar
  16. 16.
    Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature (Lond) 385:525–529Google Scholar
  17. 17.
    Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB (1997) Disruption of alpha 3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833–843Google Scholar
  18. 18.
    Gabriel HD, Jung D, Bützler C, Temme A, Traub O, Winterhager E, Willecke K (1998) Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol 140:1453–1461Google Scholar
  19. 19.
    Simon A, Goodenough D, Paul DL (1998) Mice lacking connexin 40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 8:295–298Google Scholar
  20. 20.
    Kirchhoff S, Nelles E, Hagendorff A, Krüger O, Traub O, Willecke K (1998) Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin 40-deficient mice Curr Biol 8:299–302Google Scholar
  21. 21.
    Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L, Govea N, Milá M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin 26 mutations associated with the most common form of nonsyndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609Google Scholar
  22. 22.
    Carrasquillo MM, Zlotogora J, Barges S, Chakravarti A (1997) Two different connexin 26 mutations in an inbred kindred segregating non-syndromic recessive deafness: implications for genetic studies in isolated populations Hum Mol Genet 6:2163–2172Google Scholar

Copyright information

© The Clinical Electron Microscopy Society of Japan 1998

Authors and Affiliations

  • Masahito Oyamada
    • 1
  • Yumiko Oyamada
    • 1
  • Tetsuro Takamatsu
    • 1
  1. 1.Department of Pathology and Cell Regulation, Kyoto PrefecturalUniversity of MedicineKyotoJapan

Personalised recommendations