Chromosome Research

, Volume 2, Issue 3, pp 225–234 | Cite as

The DNA rearrangement associated with facioscapulohumeral muscular dystrophy involves a heterochromatin-associated repetitive element: Implications for a role of chromatin structure in the pathogenesis of the disease

  • Sara T. Winokur
  • Ulla Bengtsson
  • Julie Feddersen
  • Kathy D. Mathews
  • Barbara Weiffenbach
  • Holly Bailey
  • Rachelle P. Markovich
  • Jeffrey C. Murray
  • John J. Wasmuth
  • Michael R. Altherr
  • Brian C. Schutte
Article

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant form of muscular dystrophy. The FSHD locus has been linked to the most distal genetic markers on the long arm of chromosome 4. Recently, a probe was identified that detects anEcoRI fragment length polymorphism which segregates with the disease in most FSHD families. Within theEcoRI fragment lies a tandem array of 3.2 kb repeats. In several familial cases and four independent sporadic FSHD mutations, the variation in size of theEcoRI fragment was due to a decrease in copy number of the 3.2 kb repeats. To gain further insight into the relationship between the tandem array and FSHD, a single 3.2 kb repeat unit was characterized. Fluorescencein situ hybridization (FISH) demonstrates that the 3.2 kb repeat cross-hybridizes to several regions of heterochromatin in the human genome. In addition, DNA sequence analysis of the repeat reveals a region which is highly homologous to a previously identified family of heterochromatic repeats, LSau. FISH on interphase chromosomes demonstrates that the tandem array of 3.2 kb repeats lies within 215 kb of the 4q telomere. Together, these results suggest that the tandem array of 3.2 kb repeats, tightly linked to the FSHD locus, is contained in heterochromatin adjacent to the telomere. In addition, they are consistent with the hypothesis that the gene responsible for FSHD may be subjected to position effect variegation because of its proximity to telomeric heterochromatin.

Key words

heterochromatin telomere repetitive DNA family facioscapulohumeral muscular dystrophy position effect variegation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti A, Rainaldi G, Lobbiani Aet al. (1987) Chromosomal localization by in situ hybridization of the human Sau3A family of DNA repeats.Hum Genet 75, 326–332.PubMedGoogle Scholar
  2. Agresti A, Meneveri R, Siccardi AGet al. (1989) Linkage in human heterochromatin between highly divergentSau3A repeats and a new family of repeated DNA sequences (HaeIII family).J Mol Biol 205: 625–631.PubMedGoogle Scholar
  3. Al-Shawi R, Kinnaird J, Burke J, Bishop JO (1990) Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect.Mol Cell Biol 10: 1192–1198.PubMedGoogle Scholar
  4. Altschul SF, Gish W, Miller E, Myers EW, and Lipman DJ (1990) Basic alignment search tool.J Mol Biol 215: 403–410.PubMedGoogle Scholar
  5. Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomere and silent mating-type loci inS. cerevisiae.Cell 66: 1279–1287.PubMedGoogle Scholar
  6. Bates GP, MacDonald ME, Baxendale Set al. (1990) A yeast artificial chromosome telomere clone spanning a possible location of the Huntington disease gene.Am J Hum Genet 46: 762–775.PubMedGoogle Scholar
  7. Buckle VJ, Kearney L (1993) Untwirling dirvish.Nature Genet 5: 4–5.PubMedGoogle Scholar
  8. Capel B, Rasberry C, Dyson Jet al. (1993) Deletion of Y chromosome sequences located outside the testis determining region can cause XY female sex reversal.Nature Genet 5: 301–307.PubMedGoogle Scholar
  9. Carlock LR, Smith D, Wasmuth, JJ. (1986) Genetic counterselective procedure to isolate interspecific cell hybrids containing single human chromosomes: construction of cell hybrids and recombinant DNA libraries specific for human chromsomes 3 and 4.Som Cell Mol Genet 12: 163–174.PubMedGoogle Scholar
  10. Cattanach BM (1974) Position effect variegation in the mouse.Genet Res 23: 291–306.PubMedGoogle Scholar
  11. Cook PJ, Hamerton JL (1979) Report of the committee on the genetic constitution of chromosome 1.Cytogenet Cell Genet 25: 9–20.PubMedGoogle Scholar
  12. Cross S, Lindsey J, Fantes Jet al. (1990) The structure of a subterminal repeated sequence present on many human chromosomes.Nucleic Acids Res 18: 6649–6657.PubMedGoogle Scholar
  13. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Res 12: 387–395.PubMedGoogle Scholar
  14. Dugaiczyk A, Goold R, diSibio G, Myers RM (1992) Improved sequencing of cosmids using new primers and linearized DNA.Nucleic Acids Res 20: 6421–6422.PubMedGoogle Scholar
  15. Eberl DF, Duyf BJ, Hilliker AJ (1993) The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus ofDrosophila melanogaster.Genetics 134: 277–292.PubMedGoogle Scholar
  16. Eissenberg JC (1989) Position effect variegation inDrosophila: Towards a genetics of chromatin assembly.Bioessays 11: 14–7.PubMedGoogle Scholar
  17. Gilbert JR, Stajich Speer MC, Vance JMet al. (1992) Linkage studies in facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 51: 424–427.PubMedGoogle Scholar
  18. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in the mammalian chromosomes using silver staining.Chromosoma 53: 37–50.PubMedGoogle Scholar
  19. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect atS. cerevisiae telomeres: reversible repression ofPolII transcription.Cell 63: 751–762.PubMedGoogle Scholar
  20. Gottschling DE (1992) Telomere proximal DNA inSaccharomyces cerevisiae is refractory to methyltransferase activityin vivo.Proc Natl Acad Sci USA 89: 4062–4065.PubMedGoogle Scholar
  21. Grigliatti T (1991) Position effect variegation—an assay for nonhistone chromosomal proteins and chromatin assembly and modifying factors. In Hamkalo BA and Elgin SCR, eds.Methods in Cell Biology: Functional Organization of the Nucleus—A Laboratory Guide. San Diego: Academic Press, Vol 35 pp. 588–625.Google Scholar
  22. Hazelrigg T, Levis R, Rubin GM (1984) Transformation ofwhite locus DNA inDrosophila: dosage compensation,zeste interaction, and position effects.Cell 36: 469–481.PubMedGoogle Scholar
  23. Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement.Proc Natl Acad Sci USA 69: 3394–3398.PubMedGoogle Scholar
  24. Heng HHQ, Squire J, Tsui L-C (1992) High-resolution mapping of mammalian genes byin situ hybridization to free chromatin.Proc Natl Acad Sci USA 89: 9509–9513.PubMedGoogle Scholar
  25. Henikoff S (1990) Position-effect variegation after 60 years.Trends Genet 6: 422–426.PubMedGoogle Scholar
  26. Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features.Am J Hum Genet 51: 17–37.PubMedGoogle Scholar
  27. Ivens A, Flavin N, Williamson Ret al. (1990) The human homeobox gene HOX7 maps to chromosome 4p16.1 and may be implicated in Wolf-Hirshhorn syndrome.Hum Genet 84: 473–476.PubMedGoogle Scholar
  28. Jaenisch R, Jahner D, Nobis Pet al. (1981) Chromosomal position and activation of retroviral genomes integrated into the germ line of mice.Cell 24: 519–529.PubMedGoogle Scholar
  29. James TC, Eissenberg JC, Craig Cet al. (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein ofDrosophila.Eur J Cell Biol 50: 170–180.PubMedGoogle Scholar
  30. Lima-de-Faria A (1983)Molecular Evolution and Organization of the Chromosome. Amsterdam: Elsevier Science Publishers, pp. 701–721.Google Scholar
  31. Lunt PW, Composton DAS, Harper PS (1989) Estimation of age dependent penetrance in facioscapulohumeral muscular dystrophy.J Med Genet 26: 755–760.PubMedGoogle Scholar
  32. Lunt PW, Harper PS (1991) Genetic counselling in facioscapulohumeral muscular dystrophy.J Med Genet 28: 655–664.PubMedGoogle Scholar
  33. Mathews KD, Mills KA, Bosch EPet al. (1992) Linkage localization of facioscapulohumeral muscular dystrophy (FSHD) in 4q35.Am J Hum Genet 51: 428–431.PubMedGoogle Scholar
  34. Meneveri R, Agresti A, Marozzi Aet al. (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks.Gene 123: 227–234.PubMedGoogle Scholar
  35. Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: properties and prospects.Am J Hum Genet 31: 264–280.PubMedGoogle Scholar
  36. Mills KA, Buetow KH, Xu Yet al. (1992) Genetic and physical mapping on chromosome 4 narrows the localization of the gene for facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 51: 432–439.PubMedGoogle Scholar
  37. Padberg GW, Lunt PW, Koch M, Fardeau M (1991) Workshop report: diagnostic criteria for facioscapulohumeral muscular dystrophy.Neuromusc Dis 1: 231–234.PubMedGoogle Scholar
  38. Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy.Proc Natl Acad Sci USA 89: 1388–1392.PubMedGoogle Scholar
  39. Saccone S, De Sario A, Valle GD, Bernardi G (1992) The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes.Proc Natl Acad Sci USA 89: 4913–4917.PubMedGoogle Scholar
  40. Sarfarazi M, Wijmenga C, Upadhyaya Met al. (1992) Regional mapping of facioscapulohumeral muscular dystrophy gene on 4q35: combined analysis of an international consortium.Am J Hum Genet 51: 396–403.PubMedGoogle Scholar
  41. Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in amphibia. XI. Constitutive heterochromatin, nucleolus organizers, 18S, 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae.Chromosoma 95: 271–284.PubMedGoogle Scholar
  42. Singer MF (1982) Highly repeated sequences in mammalian genomes.Int Rev Cytol 76: 67–112.PubMedGoogle Scholar
  43. Sorensen PD, Lomholt B, Fredericksen S, Tommerup N (1991) Fine mapping of human 5S rRNA genes to chromosome 1q42.11–q42.13.Cytogenet Cell Genet 57: 26–29.PubMedGoogle Scholar
  44. Spradling AC, Karpen GH (1990) Sixty years of mystery.Genetics 126: 779–784.PubMedGoogle Scholar
  45. Stadler HS, Padanilam BJ, Beutow K, Murray JC, Solurska M (1992) Identification and genetic mapping of a homeobox gene to the 4p6.1 region of human chromosome 4.Proc Natl Acad Sci USA 89: 11579–11583.PubMedGoogle Scholar
  46. Tartof KD, Hobbs C, Jones M (1984) A structural basis for variegating position effects.Cell 37: 869–878.PubMedGoogle Scholar
  47. Therman E (1986)Human Chromosomes. New York: Springer-Verlag.Google Scholar
  48. Trask BJ, Pinkel D, van den Engh G (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs.Genomics 5: 710–717.PubMedGoogle Scholar
  49. Traverse KL, Pardue ML (1989) Studies of He-T DNA sequences in the pericentric regions ofDrosophila chromosomes.Chromosoma 97: 261–271PubMedGoogle Scholar
  50. Upadhyaya M, Lunt P, Sarfarazi Met al. (1992) The mapping of chromosome 4q markers in relation to facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 51: 404–410.PubMedGoogle Scholar
  51. van den Engh G, Sachs R, Trask BJ (1992) Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model.Science 257: 1410–1412.PubMedGoogle Scholar
  52. van Deutekom JCT, Wijmenga C, van Tienhoven EAEet al. (1993) FSHD associated DNA rearrangements are due to large deletions of integral copies of a 3.2 kb tandemly repeated unit.Hum Mol Genet 2: 2037–2042.PubMedGoogle Scholar
  53. Verma R (ed.) (1988)Heterochromatin. Cambridge, University Press.Google Scholar
  54. Wakimoto BT, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes on chromosome 2L ofDrosophila melanogaster.Genetics 125: 141–154.PubMedGoogle Scholar
  55. Warrington JA (1992) Physical mapping of the distal portion of the long arm of chromosome 5. PhD Thesis. University of California, Irvine.Google Scholar
  56. Waye JS, Willard HF (1989) Human β-satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA.Proc Natl Acad Sci USA 86: 6250–6254.PubMedGoogle Scholar
  57. Weiffenbach B, Bagley R, Falls Ket al. (1992) Linkage analysis of five chromosome 4 markers localizes the facioscapulohumeral muscular dystrophy (FSHD) gene to distal 4q35.Am J Hum Genet 51: 416–423.PubMedGoogle Scholar
  58. Weiffenbach B, Dubois J, Storvick Det al. (1993) Mapping the facioscapulohumeral muscular dystrophy gene is complicated by chromosome 4q35 recombination events.Nature Genet 4: 165–169.PubMedGoogle Scholar
  59. Wijmenga C, Frants RR, Brouwer OFet al. (1990) Location of facioscapulohumeral muscular dystrophy gene on chromosome 4.Lancet 336: 651–653.PubMedGoogle Scholar
  60. Wijmenga C, Padberg GW, Moerer Pet al. (1991) Mapping of facioscapulohumeral muscular dystrophy gene to chromosome 4q35—qter by multipoint linkage analysis and in situ hybridization.Genomics 9: 570–575.PubMedGoogle Scholar
  61. Wijmenga C, Hewitt JE, Sandkuijl LAet al. (1992a) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy.Nature Genet 2: 26–30.PubMedGoogle Scholar
  62. Wijmenga C, Sandkuijl LA, Moerer Pet al. (1992b) Genetic linkage map of facioscapulohumeral muscular dystrophy and five polymorphic loci on chromosome 4q35-qter.Am J Hum Genet 51: 411–415.PubMedGoogle Scholar
  63. Wijmenga C, Wright TC, Baan MJet al. (1993) Physical mapping and YAC-cloning connects four genetically distinct 4qter loci (D4S163, D4S139, D4F35S1 and D4F104S1) in the FSHD generegion.Hum Mol Genet 2: 1667–1672.PubMedGoogle Scholar
  64. Winokur ST, Schutte B, Weiffenbach Bet al. (1993) A radiation hybrid map of 15 loci on the distal long arm of chromosome 4, the region containing the gene responsible for facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 53: 874–880.PubMedGoogle Scholar
  65. Wright TC, Wijmenga C, Clark LNet al. (1993) Fine mapping of the FSHD gene region orientates the rearranged fragment detected by the probe p13E-11.Hum Mol Genet 2: 1673–1678.PubMedGoogle Scholar
  66. Wu JC, Manuelidis L (1980) Sequence definition and organization of a human repeated DNA.J Mol Biol 142: 363–386.PubMedGoogle Scholar
  67. Youngman S, Bates GP, Williams Set al. (1992) The telomeric 60 kb of chromsome arm 4p is homologous to telomeric regions on 13p, 15p, 21p, and 22p.Genomics 14: 350–356.PubMedGoogle Scholar

Copyright information

© Rapid Communications of Oxford Ltd 1994

Authors and Affiliations

  • Sara T. Winokur
    • 1
  • Ulla Bengtsson
    • 1
  • Julie Feddersen
    • 2
  • Kathy D. Mathews
    • 2
  • Barbara Weiffenbach
    • 3
  • Holly Bailey
    • 2
  • Rachelle P. Markovich
    • 1
  • Jeffrey C. Murray
    • 2
  • John J. Wasmuth
    • 1
  • Michael R. Altherr
    • 1
    • 4
  • Brian C. Schutte
    • 2
  1. 1.Department of Biological ChemistryUniversity of CaliforniaIrvineUSA
  2. 2.Department of PediatricsUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  3. 3.Collaborative Research Inc.WalthamUSA
  4. 4.Genomics and Structural Biology GroupLANLLos AlamosUSA

Personalised recommendations