Exploiting the 1, 440-fold symmetry of the master two-loop diagram

  • D. J. Broadhurst


The 1, 440-element symmetry group of the generic two-loop diagram of massless scalar field theory in 4-2ω dimensions is computed, using tetrahedral symmetry and star-triangle duality. Constructing all quadratic and quartic polynomial invariants, we expand the diagram throughO(ω5), where one first encounters a coefficient that does not appear to be expressible in terms of the Riemann zeta function, thereby strengthening previous suspicions that genuinely new calculational comoplexity arises at the level of 6-loop renormalization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.G. Chetyrkin, F.V. Tkachov: Nucl. Phys.192, 159 (1981)Google Scholar
  2. 2.
    K.G. Chetyrikin, S.G. Gorishny, S.A. Larin, F.V. Tkachov: Phys. Lett.132B, 351 (1983); D.I. Kazakov: Phys. Lett.133B, 406 (1983)Google Scholar
  3. 3.
    D.J. Broadhurst: Massless scalar Feynman diagrams: five loops and beyond. Open University preprint OUT-4102-18 (1985)Google Scholar
  4. 4.
    D.I. Kazakov: TMΦ58, 343 (1984) (in Russian); Dubna lecture notes, E2-84-410 (June 1984)Google Scholar
  5. 5.
    D.J. Broadhurst: Phys. Lett.164B, 356 (1985)Google Scholar
  6. 6.
    G.'t Hooft: private communicationGoogle Scholar
  7. 7.
    S.G. Gorishny, A.P. Isaev: TMΦ62, 345 (1985) (in Russian)Google Scholar
  8. 8.
    K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov: Nucl. Phys.B174, 345 (1980)Google Scholar
  9. 9.
    A.C. Hearn: Reduce user's manual. Rand publication CP78, 1984Google Scholar
  10. 10.
    F.V. Tkachov: TMΦ56, 350 (1983) (in Russian)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • D. J. Broadhurst
    • 1
  1. 1.Department of PhysicsOpen UniversityMilton KeynesUK

Personalised recommendations