The master two-loop diagram with masses

  • D. J. Broadhurst


In every mass case needed for QCD and QED two-point functions, the most difficult two-loop scalar Feynman diagram is reduced, by a systematic dispersive method, to a single integral of logarithms, whose expansion is obtained for large and, when appropriate, small momenta. The new results for the case with an intermediate state comprising three massive particles are needed for the two-loop calculation of fermion propagators.


Field Theory Elementary Particle Quantum Field Theory Intermediate State Massive Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.G. Chetyrkin, F.V. Tkachov: Nucl. Phys. B 192 (1981) 159Google Scholar
  2. 2.
    D.J. Broadhurst, D.T. Barfoot: Z. Phys. C — Particles and Fields 41 (1988) 81; D.J. Broadhurst: Z. Phys. C — Particles and Fields 32 (1986) 249; Phys. Lett. 164B (1985) 356; Open University report OUT-4102-18 (1985)Google Scholar
  3. 3.
    G. Källén, A. Sabry: Dan. Met. Fys. Medd. 29 (1955) no. 17; J. Schwinger: Particles, sources and fields. Reading, Mass: Addition-Wesley 1973Google Scholar
  4. 4.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov: Nucl. Phys. B 147 (1979) 385Google Scholar
  5. 5.
    L.J. Reinders, H.R. Rubinstein, S. Yazaki: Phys. Lett. 97B (1980) 257; 100B (1981) 519E; 103B (1981) 63; 104B (1981) 305Google Scholar
  6. 6.
    L.J. Reinders, H.R. Rubinstein, S. Yazaki: Nucl. Phys. B 186 (1981) 109; Phys. Rep. 127 (1985)Google Scholar
  7. 7.
    K. Schilcher, M.D. Tran, N.F. Nasrallah: Nucl. Phys. B 181 (1981) 91; B187 (1981) 594EGoogle Scholar
  8. 8.
    D.J. Broadhurst: Phys. Lett. 101B (1981) 423Google Scholar
  9. 9.
    S.C. Generalis: Open University thesis, OUT-4102-13 (1984); D.J. Broadhurst and S.C. Generalis, Open University report OUT-4102-12 (1984)Google Scholar
  10. 10.
    S.C. Generalis, D.J. Broadhurst: Phys. Lett. 139B (1984) 85; 142B (1984) 75; 165B (1985) 175Google Scholar
  11. 11.
    R. Tarrach: Nucl. Phys. B 183 (1981) 384Google Scholar
  12. 12.
    N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher: Open University preprint OUT-4102-28 (1990)Google Scholar
  13. 13.
    K. Schilcher: Phys. Rev. D 33 (1986) 683Google Scholar
  14. 14.
    G. Rufa: University of Mainz thesis MZ-TH/85-16 (1985)Google Scholar
  15. 15.
    L. Lewin: Polylogarithms and associated functions. New York: North Holland 1981Google Scholar
  16. 16.
    M.A. Abramowitz, I.A. Stegun: Handbook of mathematical functions. New York: Dover 1965Google Scholar
  17. 17.
    I.S. Gradshteyn, I.M. Rhyzhik: Table of integrals, series, and products. New York: Academic Press 1980Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. J. Broadhurst
    • 1
  1. 1.The Open UniversityMilton KeynesEngland

Personalised recommendations