Advertisement

New ISR and SPS collider multiplicity data and the Golokhvastov generalization of the KNO scaling

  • R. Szwed
  • G. Wrochna
Article

Abstract

The generalization of KNO scaling proposed by Golokhvastov (KNO-G scaling) is tested usingpp multiplicity data, in particular results of the new high precision ISR measurements. Since the data obey KNO-G scaling over the full energy range\(\sqrt s \)=2.51−62.2 GeV with the scaling function ψ(z), having only one free parameter, the superiority of the KNO-G over the standard approach is clearly demonstrated. The extrapolation within KNO-G scaling to the SPS Collider energy range and a comparison with the recent UA5 multiplicity results is presented.

Keywords

Field Theory Elementary Particle Quantum Field Theory Energy Range High Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Koba, H.B. Nielsen, P. Olesen: Nucl. Phys.B40, 317 (1972)Google Scholar
  2. 2.
    P. Slattery: Phys. Rev. Lett.29, 1624 (1972); P. Slattery: Phys. Rev.D7, 2073 (1973)Google Scholar
  3. 3.
    A. Wroblewski: Acta Phys. Pol.B4, 857 (1973)Google Scholar
  4. 4.
    G. Pancheri: Preprint CERN-EP/84-96 (1984). Invited talk given at the XV Symposium on Multiparticle Dynamics, Lund, 1984Google Scholar
  5. 5.
    A.I. Golokhvastov: Preprint JINR P1-10591 (1977); Sov. J. Nucl. Phys.27, 430 (1978)Google Scholar
  6. 5a.
    A.I. Golokhvastov: Preprint JINR P1-10871 (1977); Sov. J. Nucl. Phys.30, 128 (1979)Google Scholar
  7. 6.
    A. Breakstone et al.: Phys. Rev.D30, 528 (1984)Google Scholar
  8. 7.
    G.J. Alner et al.: Phys. Lett.138B, 304 (1984)Google Scholar
  9. 8a.
    2.23 GeV/c: A.M. Eisner et al.: Phys. Rev.B138, 670 (1965)Google Scholar
  10. 8b.
    2.8 GeV/c: W.J. Fickinger et al.: Phys. Rev.125, 2082 (1962)Google Scholar
  11. 8c.
    E. Pickup et al.: Phys. Rev.125, 2091 (1962)Google Scholar
  12. 8d.
    4. GeV/c: S. Coletti et al.: Nuovo Cimento49A, 479 (1967)Google Scholar
  13. 8e.
    L. Bodini et al.: Nuovo Cimento,58A, 475 (1968)Google Scholar
  14. 8f.
    5.5 GeV/c: G. Alexander et al.: Phys. Rev.154, 1284 (1967)Google Scholar
  15. 8g.
    6.6 GeV/c: E.R. Gellert: Report LBL-749 (1972)Google Scholar
  16. 8h.
    12 GeV/c: V. Blobel et al.: Nucl. Phys.B69, 454 (1974)Google Scholar
  17. 8i.
    19 GeV/c: H. Boggild et al.: Nucl. Phys.B27, 285 (1971)Google Scholar
  18. 8k.
    24 GeV/c: V. Blobel et al.: Nucl. Phys.B69, 454 (1974)Google Scholar
  19. 8i.
    35.7 GeV/c: I.V. Boguslavsky et al.: Report JINR I-10134 (1976)Google Scholar
  20. 8m.
    50 GeV/c: V.V. Ammosov et al.: Phys. Lett.42B, 519 (1972)Google Scholar
  21. 8p.
    60 GeV/c: C. Bromberg et al.: Phys. Rev.D15, 64 (1977)Google Scholar
  22. 8o.
    69 GeV/c: V.V. Babinstev et al.: Serpukhov Report IHEP M-25 (1976)Google Scholar
  23. 8s.
    100 GeV/c: J. Erwin et al.: Phys. Rev. Lett.32, 254 (1974)Google Scholar
  24. 8ly.
    100 GeV/c: W.M. Morse et al.: Nuovo Cimento32A, 101 (1976)Google Scholar
  25. 8aa.
    100 GeV/c: A.E. Brenner et al.: Phys. Rev.D26, 1497 (1982)Google Scholar
  26. 8bb.
    102 GeV/c: C. Bromberg et al.: Phys. Rev. Lett.31, 1563 (1973)Google Scholar
  27. 8cc.
    175 GeV/c: A.E. Brenner et al.: Phys. Rev.D26, 1497 (1982)Google Scholar
  28. 8dd.
    205 GeV/c: S. Barish et al.: Phys. Rev.D9, 2689 (1974)Google Scholar
  29. 8ee.
    303 GeV/c: A. Firestone et al.: Phys. Rev.D10, 2080 (1974)Google Scholar
  30. 8ff.
    303 GeV/c: F.T. Dao et al.: Phys. Rev. Lett.29, 1627 (1972)Google Scholar
  31. 8gg.
    360 GeV/c: J.L. Bailly et al.: Preprint CERN/EP83-192 (1983)Google Scholar
  32. 8hh.
    400 GeV/c: R.D. Kass et al.: Phys. Rev.D20, 605 (1979)Google Scholar
  33. 8ii.
    405 GeV/c: C. Bromberg et al.: Phys. Rev. Lett.31, 1563 (1973)Google Scholar
  34. 8kk.
    405 GeV/c: H. Kichimi et al.: Phys. Rev.D20, 37 (1979)Google Scholar
  35. 9.
    E. de Wolf et al.: Nucl. Phys.B87, 325 (1975)Google Scholar
  36. 10.
    W. Thome et al.: Nucl. Phys.B129, 365 (1977)Google Scholar
  37. 11a.
    12 GeV/c: J. Benecke et al.: Nucl. Phys.B76, 29 (1974)Google Scholar
  38. 11b.
    19 GeV/c: H. Boggild et al.: Nucl. Phys.B27, 285 (1971)Google Scholar
  39. 11c.
    24 GeV/c: J. Benecke et al.: Nucl. Phys.B76, 29 (1974)Google Scholar
  40. 11d.
    69 GeV/c: V.V. Babintsev et al.: Serpukhov Report IHEP M-25 (1976)Google Scholar
  41. 12a.
    J. Whitmore et al.: Phys. Rep.10C, 273 (1974)Google Scholar
  42. 12b.
    100 GeV/c: W.M. Morse et al.: Phys. Rev.D15, 66 (1977)Google Scholar
  43. 12c.
    102 GeV/c: C. Bromberg et al.: Phys. Rev. Lett.31, 1563 (1973)Google Scholar
  44. 12d.
    205 GeV/c: S. Barish et al.: Phys. Rev.D9, 2689 (1974)Google Scholar
  45. 12e.
    303 GeV/c: A. Firestone et al.: Phys. Rev.D10, 2080 (1974)Google Scholar
  46. 12f.
    405 GeV/c: C. Bromberg et al.: Phys. Rev. Lett.31, 1563 (1973)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Szwed
    • 1
    • 2
  • G. Wrochna
    • 3
  1. 1.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland
  2. 2.CERNGenevaSwitzerland
  3. 3.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations