Zeitschrift für Physik C Particles and Fields

, Volume 32, Issue 4, pp 537–547 | Cite as

EMC effect and breaking of additivity of nucleons in the high-energy hadron-nucleus interactions

  • N. N. Nikolaev


The EMC effect implies a strong violation of additivity of nucleons in the absorption of virtual photons by atomic nuclei. In this paper we analyze the experimental data on the hadron-nuclei interaction cross sections in search for similar effects in the scattering of hadrons on nuclei. Specifically, we look for deviations from predictions of the multiple scattering theory. We formulate, and make extensive use of the Glauber-Bribov universality of the hadron-nucleus interaction cross sections, which makes it possible to check in a unique way a consistency of the experimental data on the total, inelastic and absorption cross sections for all the incident hadrons. We find evidence for the effective cross section of interaction with bound nucleons being 5–15% larger than with free nucleons. We comment on implications of this observation for models of the EMC effect.


Experimental Data Field Theory Elementary Particle Quantum Field Theory Atomic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Aubert et al.: Phys. Lett.B123, 275 (1983)Google Scholar
  2. 2.a)
    C.H. Llewellyn Smith: Phys. Lett.B128, 107 (1983);Google Scholar
  3. 2.b)
    M. Ericson, A. Thomas: Phys. Lett.B128, 112 (1983);Google Scholar
  4. 2.c)
    E.E. Saperstein, M.Zh. Shmatikov: Pisma ZhETF41, 44 (1985)Google Scholar
  5. 3.a)
    E.M. Levin, M.G. Ryskin: Yad. Fiz.40, 809 (1984);Google Scholar
  6. 3.b)
    M. Staszel et all: Phys. Rev.D29, 2638 (1984)Google Scholar
  7. 4.a)
    R.L. Jaffe: Phys. Rev. Lett.50, 228 (1983);Google Scholar
  8. 4.b)
    C.E. Carlson, T.J. Havens: Phys. Rev. Lett.51, 261 (1983);Google Scholar
  9. 4.c)
    L.L. Kondratyuk, M.Zh. Shmatikov: Pisma ZhETF39, 324 (1984); Yad. Fiz.41, 222 (1985); d) Y. Kiruhara et al.: INS-Rep-534 (1985)Google Scholar
  10. 5.
    N.N. Nikolaev: In Proc. VII Int. Semin. Multiquark interactions and quantum chromodynamics. 1984, Dubna, USSR, pp. 144–156. Ext. Vers. Oxford theory preprint OU-TP-58/84 (1984)Google Scholar
  11. 6.
    L.G. Dakhno, N.N. Nikolaev: Nucl. Phys.A436, 653 (1985)Google Scholar
  12. 7.a)
    J.P. Burq et al.;Nucl. Phys.B87, 205 (1981);Google Scholar
  13. 7.b)
    V.G. Ableev et al.: Yad. Fiz.37, 769 (1981);Google Scholar
  14. 7.c)
    A. Bujak et al.: Phys. Rev.D23, 1895 (1981)Google Scholar
  15. 8.
    P.V. Murthy et al.: Nucl. Phys.B92, 269 (1975)Google Scholar
  16. 9.
    N.N. Nikolaev: ZhETF81, 814 (1981)Google Scholar
  17. 10.a)
    J. Biel et al.: Phys. Rev. Lett.36, 1004 (1976);Google Scholar
  18. 10.b)
    A. Babaev et al.: Yad. Fiz.20, 71 (1974);Google Scholar
  19. 10.c)
    L.W. Jones et al.: Phys. Lett.B36, 509 (1971);Google Scholar
  20. 10.d)
    J. Engler et al. Phys. Lett.B31, 669 (1970);B32, 716 (1970);Google Scholar
  21. 10.e)
    F.E. Parker et al.: Phys. Lett.B31, 246 (1970);Google Scholar
  22. 10.f)
    W. Lakin et al.: Phys. Lett.B31, 677 (1970)Google Scholar
  23. 11.
    A. Gsponer et al. Phys. Rev. Lett.42, 9 (1979)Google Scholar
  24. 12.a)
    B.M. Bobchenko et al.: Yad. Fiz.30, 1553 (1979)Google Scholar
  25. 12.b)
    M. Kosov: PhD Thesis, ITEP (1980)Google Scholar
  26. 13.a)
    J.V. Allaby et al.: Yad. Fiz.12, 538 (1970);Google Scholar
  27. 13.b)
    Yu. P. Gorin et al.: Yad. Fiz.18, 336 (1973)Google Scholar
  28. 14.
    A.S. Caroll et al.: Phys. Lett.B80, 319 (1979)Google Scholar
  29. 15.
    T.J. Roberts et al.: Nucl. Phys.B159, 56 (1979)Google Scholar
  30. 16.a)
    R.G. Glauber: In Lectures in theoretical physics. Eds. W.E. Brittin, L.G. Dunham v. 1, pp. 315–414 New York: Interscience 1959,Google Scholar
  31. 16.b)
    A.G. Sitenko Ukrai. Phys. J.4, 152 (1959)Google Scholar
  32. 17.
    V.N. Gribov: ZhETF56, 892 (1969)Google Scholar
  33. 18.a)
    W. Czyz, L. Lesniak, H. Wolek: Nucl. Phys.B19, 125 (1970);Google Scholar
  34. 18.b)
    R. Glauber, G. Matthiae. Nucl. Phys.B21, 135 (1970)Google Scholar
  35. 19.
    Yu.P. Nikitin, I.L. Rozental: High energy nuclear physics. Moscow: Atomizdat Publishers 1980Google Scholar
  36. 20.a)
    C.W. de Jager, H. de Vries, C. de Viries: At. Data Nucl. Data Tables14, 479 (1974),Google Scholar
  37. 20.b)
    R.C. Barrett, D.F. Jackson: Nuclear sizes and structure Oxford: Clarendon Press, 1977Google Scholar
  38. 21.
    L.G. Dakhmo Yad. Fiz.37, 993 (1983)Google Scholar
  39. 22.
    V.V. Karmanov, L.A. Kondratyuk: Pisma zhETF18, 451 (1973)Google Scholar
  40. 23.a)
    M.L. Good, J. Walker: Phys. Rev.120, 1857 (1960);Google Scholar
  41. 23.b)
    H.I. Miettinen, J. Pumplin: Phys. Rev.D18, 1469 (1978)Google Scholar
  42. 24.
    B.Z. Kopeliovich, L.I. Lapidus: Pisma ZhETF28, 664 (1978)Google Scholar
  43. 25.
    Yu.M. Kazarinov et al.: ZhETF70, 1152 (1976)Google Scholar
  44. 26.
    A.B. Kaidalov: Diffraction production mechanisms. Phys. Rep.50, n. 3 (1979)Google Scholar
  45. 27.
    J.P. Martin: Ph.D. Thesis, University Claude Bernard, Lyon-1, 1981; J.P. Burq et al.: Phys. Lett.B109, 111, 127 (1982)Google Scholar
  46. 28.
    Compilations of cross sections: CERN-HERA 83-01, 83-02, 84-01Google Scholar
  47. 29.
    D.P. Roy, R.G. Roberts: Nucl. Phys.B77, 240 (1974)Google Scholar
  48. 30.
    J.G. Rushbrooke: Rapporteur's Talk at the Intern Europhysics conf. on High Energy Physics, Bari, Italy, July 1985, preprint CERN-EP/85-178 (1975)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • N. N. Nikolaev
    • 1
  1. 1.Intstitute for Nuclear StudyUniversity of TokyoTanashi, Tokyo 188Japan

Personalised recommendations