Gauge theory of gravity

II. Reciprocity and confinement
  • Takeshi Fukuyama


General relativity is formulated in the framework of Yang-Mills theory whose gauge group isO(3, 2). This theory allows the global topological charge of spin without breaking Bianchi identity. β function in the renormalization group equation is negative and the confinement of gravity is expected. The confinement radius is, however, actually infinite and we can read off the relation that the average mass density of the present universe is exactly equal to the critical value ρ c (t)=6H2(t)/K2.


Field Theory General Relativity Elementary Particle Gauge Theory Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Fukuyama: Gauge theory of gravitation and nodal singularity, June 1980, to appear in Nuovo CimentoGoogle Scholar
  2. 2.
    R. Utiyama: Phys. Rev.101, 1597 (1956)Google Scholar
  3. 2a.
    T.W.B. Kibble: J. Math. Phys.3, 608 (1962)Google Scholar
  4. 2b.
    T. Nakano, K. Hayashi: Prog. Theor. Phys.38, 491 (1967)Google Scholar
  5. 3.
    C.N. Yang, R. Mills: Phys. Rev.96, 191 (1954)Google Scholar
  6. 4.
    S.W. MacDowell, F. Mansouri: Phys. Rev. Lett.38, 739 (1977)Google Scholar
  7. 4a.
    A. Inomata, M. Trinkala: Phys. Rev.D19, 1665 (1978)Google Scholar
  8. 5.
    P.C. West: Phys. Lett.76B, 569 (1978)Google Scholar
  9. 5a.
    K.S. Stelle, P.C. West: Phys. Rev.D21, 1466 (1980)Google Scholar
  10. 6.
    T.W.B. Kibble in [2]Google Scholar
  11. 7.
    P.A.M. Dirac: Ann. Math.36, 657 (1935)Google Scholar
  12. 7a.
    F. Gursey: Lecture in group theoretical concepts and methods in elementary particle physics, ed. F. Gursey. New York: Gordon and Breach 1962Google Scholar
  13. 8.
    G. Sterman, P.K. Townsend, P. von Niewenhuizen: Phys. Rev.D17, 1501 (1978)Google Scholar
  14. 8a.
    T. Fukuyama: Nucl. Phys.B153, 467 (1979)Google Scholar
  15. 9.
    C.N. Yang: Phys. Rev. Lett.33, 445 (1974)Google Scholar
  16. 9a.
    T.T. Wu, C.N. Yang: Phys. Rev.D12, 3845 (1975); Nucl. Phys.B107 365 (1976)Google Scholar
  17. 9b.
    A. Trautman: J. Theor. Phys.16, 561 (1977)Google Scholar
  18. 9c.
    T. Eguchi, P.B. Gilkey, A.J. Hanson: Gravitation, gauge theories and differential geometry, to appear in Phys. Rep.Google Scholar
  19. 10.
    Y. Aharonov, D. Bohm: Phys. Rev.115, 485 (1959)Google Scholar
  20. 11.
    P.A.M. Dirac: Phil. Mag.47, 1158 (1924); General theory of relativity. New York: Wiley 1975Google Scholar
  21. 12.
    N. Cabibbo, E. Ferrari: Nuovo Cimento23, 1147 (1962)Google Scholar
  22. 13.
    S. Weinberg: Phys. Rev.B135, 1049 (1964)Google Scholar
  23. 13a.
    T.W.B. Kibble: Lecture in high energy physics and elementary particles, p. 885. Vienna: IAEA 1965Google Scholar
  24. 14.
    R.P. Feynman: Acta. Phys. Polon.24, 697 (1963)Google Scholar
  25. 14a.
    T. Fukuyama: Nuovo CimentoA56, 405 (1980)Google Scholar
  26. 15.
    K.S. Stelle: Phys. Rev.D16, 953 (1977)Google Scholar
  27. 16.
    T.D. Lee, G.C. Wick: Nucl. Phys.B9, 209 (1969); Phys. Rev.D2, 1033 (1970)Google Scholar
  28. 16a.
    E. Tomboulis: Phys. Lett.70B, 361 (1977)Google Scholar
  29. 17.
    N. Nakanishi: Phys. Rev.D3, 811 (1971); Phys. Rev.D5, 1968 (1972)Google Scholar
  30. 18.
    H.D. Politzer: Phys. Rev. Lett.30, 1346 (1973)Google Scholar
  31. 18a.
    D.J. Gross, F.A. Wilczek: Phys. Rev. Lett.30, 1343 (1973)Google Scholar
  32. 19.
    See for instance, C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation, chap. 29. Oxford: Freeman 1973Google Scholar
  33. 20.
    E. Witten: Talk presented at first workshop on grand unification, HUTP-80/A031Google Scholar
  34. 21.
    S. Coleman, F.D. Luccia: Phys. Rev.D21, 3305 (1980)Google Scholar
  35. 21a.
    A. Guth, E. Weinberg: Columbia University preprint CUTP-183 (1980)Google Scholar
  36. 21b.
    M.B. Einhorn, K. Sato: preprint NORDITA-80/37 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Takeshi Fukuyama
    • 1
  1. 1.Department of PhysicsOsaka UniversityOsakaJapan

Personalised recommendations