The pulsed arc cluster ion source (PACIS)

  • H. R. Siekmann
  • Ch. Lüder
  • J. Faehrmann
  • H. O. Lutz
  • K. H. Meiwes-Broer


A new cluster source, the “PACIS”, has recently been developed [1, 2]: a pulsed high-current arc is fired between two electrically isolated electrodes. In a stream of carrier gas, the nascent metal plasma cools down, thus undergoes significant aggregation. After supersonic expansion into high vacuum, the resulting cluster ions will be subject to investigation. Here, we present the current state of the source development and further technical details. The integral intensity is estimated by film thickness measurements and yields a deposition rate of, e.g., up to 2 Å per shot for lead. About 10% of the emitted material turns out to be charged. Time-of-flight measurements show similar cluster ion mass spectra as they are known from laser vaporization. Already single shot mass spectra display completen-series which can be followed ton ≈ 40. For heavy clusters, a significant velocity slip is estimated from the beam velocities.


36.40. + d 07.77. + p 07.75. + h 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganteför, G., Siekmann, H.R., Lutz, H.O., Meiwes-Broer, K.H.: Chem. Phys. Lett.165 293 (1990)Google Scholar
  2. 2.
    Meiwes-Broer, K.H., Jonk, P., Besser, M., Klocke, A., Ganteför, G., Lüder, Ch., Siekmann, H.R., Lutz, H.O.: In: Dünnschichttechnologien '90, edited by VDI, p. 262, Düsseldorf: VDI Verlag 1990Google Scholar
  3. 3.
    Small particles and inorganic clusters. Chapon, C., Gillet, M.F., Henry, C.R. (eds.), Berlin, Heidelberg, New York: Springer 1989Google Scholar
  4. 4.
    Bondybey, V.E., English, J.H.: J. Chem. Phys.74 6978 (1981)Google Scholar
  5. 5.
    Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E.: J. Chem. Phys.74 6511 (1981)Google Scholar
  6. 6.
    Begemann, W., Dreihöfer, S., Ganteför, G., Siekmann, H.R., Meiwes-Broer, K.H., Lutz, H.O.: In: Elemental and molecular clusters. In: Springer Series in Materials Science. Vol. 6, p. 230. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  7. 7.
    Schwyn, S., Garwin, E., Schmitt-Ott, A.: J. Aerosol Sci.19 639 (1988)Google Scholar
  8. 8.
    Whetten, R.L., Schriver, K.E., Persson, J.L., Hahn, M.Y.: J. Chem. Soc. Faraday Trans.86 2375 (1990)Google Scholar
  9. 9.
    Busmann, H.-G., Gaber, H., Müller, T., Hertel, I.V.: In: Dünnschichttechnologien '90. p. 269. Düsseldorf: VDI Verlag 1990Google Scholar
  10. 10.
    Ganteför, G., Gausa, M., Meiwes-Broer, K.H., Lutz, H.O.: Z. Phys. D — Atoms, Molecules and Clusters9 253 (1988)Google Scholar
  11. 11.
    see for example Ng, C.Y.: Adv. Chem. Phys. 263 (1983); Hagena, O.F.: In: Molecular beams and low density gas dynamics, Wegener, P.P. (ed.), p. 93. New York: Marcel Decker 1974Google Scholar
  12. 12.
    Heath, J.R., Liu, Yuan, O'Brien, S.C., Zhang, Quing-Ling, Curl, R.F., Tittel, F.K., Smalley, R.E.: J. Chem. Phys.83 5520 (1985)Google Scholar
  13. 13.
    Anderson, J.B.: In: Molecular beams and low density gas dynamics. Wegener, P.P. (ed.), p. 1. New York: Marcel Dekker 1974Google Scholar
  14. 14.
    Ashkenas, A., Sherman, F.S.: Rarefield gas dynamics. Leeuw, J.H. de (ed.), Vol. 4, p. 84. New York: Academic Press 1966Google Scholar
  15. 15.
    Siekmann, H.R., Lüder, Ch, Faehrmann, J., Lutz, H.O., Meiwes-Broer, K.H.: (to be published)Google Scholar
  16. 16.
    Gspann, J.: Z. Phys. D. - Atoms, Molecules and Clusters (this issue) (1991)Google Scholar
  17. 17.
    Broyer, M., Cabaud, B., Hoareau, A., Melinon, P., Rayane, D., Tribollet, B.: Mol. Phys.62 559 (1987)Google Scholar
  18. 18.
    de Heer, W.A., Milano, P., Chatelain, A.: Phys. Rev. Lett.65 488 (1990)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • H. R. Siekmann
    • 1
  • Ch. Lüder
    • 1
  • J. Faehrmann
    • 1
  • H. O. Lutz
    • 1
  • K. H. Meiwes-Broer
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeld 1Federal Republic of Germany

Personalised recommendations