Advertisement

Monatshefte für Mathematik

, Volume 90, Issue 4, pp 331–337 | Cite as

Some criteria for Buchsbaum modules

  • Ngo Viet Trung 
Article

Abstract

The paper gives a criterion for Buchsbaum modules over a local ringR which depends only on a finite system of elements ofR.

Keywords

Finite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cuong, N. T., P. Schenzel, andN. V. Trung: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr.85, 57–73 (1978).Google Scholar
  2. [2]
    Cuong, N. T., andN. V. Trung: Diplomarbeit. Martin-Luther-Universität, Halle 1974.Google Scholar
  3. [3]
    Goto, S.: On Buchsbaum rings. Preprint.Google Scholar
  4. [4]
    Grothendieck, A.: Local cohomology (Notes byR. Hartshorne), Lecture Notes in Math. 41. New York: Springer. 1967.Google Scholar
  5. [5]
    Serre, J.-P.: Algèbre locale-multiplicités. Lecture Notes Math. 11. New York: Springer. 1965.Google Scholar
  6. [6]
    Stückrad, J.: Über die kohomologische Charakterisierung von Buchsbaum-Moduln. Preprint.Google Scholar
  7. [7]
    Stückrad, J., andW. Vogel: Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie. J. Math. Kyoto Univ.13, 513–528 (1973).Google Scholar
  8. [8]
    Stückrad, J., andW. Vogel: Toward a theory of Buchsbaum singularities. Amer. J. Math.100, 727–746 (1978).Google Scholar
  9. [9]
    Trung, N. V.: Über die Übertragung der Ringeigenschaften zwischenR undR[u]/(F). Math. Nachr.92, 215–229 (1979).Google Scholar
  10. [10]
    Vogel, W.: Über eine Vermutung von D. A. Buchsbaum. J. Alg.25, 106–112 (1973).Google Scholar
  11. [11]
    Vogel, W.: A non-zero-divisor characterization of Buchsbaum modules. Michigan Math. J. (To appear.)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Ngo Viet Trung 
    • 1
  1. 1.Institut of MathematicsHanoiVietnam

Personalised recommendations