Klinische Wochenschrift

, Volume 61, Issue 24, pp 1233–1239 | Cite as

Gout and uric acid nephropathy: Some new aspects in diagnosis and treatment

  • W. Löffler
  • H. A. Simmonds
  • W. Gröbner


It has been recognized that primary disorders of uric acid metabolism result from impaired renal excretion or increased endogenous production of uric acid. It has also been found that these two mechanisms do not comprise two distinct syndromes, but may each constitute a group of syndromes. Contrary to earlier as well as currently published reports we conclude from our clinical and experimental experience that the fraction of so-called over-producers is less than 1% of all patients with primary hyperuricaemia and gout. A procedure for the diagnosis of uric acid overproduction is suggested. The manifestation of hyperuricaemia and gout mainly depends on renal uric acid clearance and is greatly influenced by dietary habits in most of the patients. An impaired renal uric acid excretion results in an increased intestinal excretion; this partly compensates for the defect.

Normalization of serum uric acid should be achieved by dietary regimens with or without additional drug treatment, but not by drug treatment alone. With drug treatment xanthine oxidase inhibitors are preferable to uricosurics; no other xanthine oxidase inhibitor besides Allopurinol has been in clinical trial, however. Due to the enhancement of uric acid clearance with uricosurics, there are groups of patients who should not be treated with these drugs. Fixed combinations of Allopurinol and uricosurics should not be used. Drugs which have uricosuric as well as other pharmacologic properties are under investigation. So far they have not reached general clinical application.

Key words

Hyperuricaemia Gout Nephropathy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berkowitz D (1965) The effects of chlorophenoxyisobutyrate with and without androsterone on the serum lipids, fat tolerance and uric acid. Metabolism 14:966–975CrossRefPubMedGoogle Scholar
  2. Boss GR, Seegmiller JE (1979) Hyperuricemia and gout. Classification, complications and management. N Engl J Med 300:1459–1468CrossRefPubMedGoogle Scholar
  3. Brown GK (1977) General discussion: Allopurinol and purine transport. In: Purine and Pyrimidine Metabolism. Ciba Foundation Symposium 48:338–341Google Scholar
  4. Despopoulos A (1966) Congruence of excretary functions in liver and kidney: hippurates. Am J Physiol 210:760–764PubMedGoogle Scholar
  5. Emmerson BT (1973) Alteration of urate metabolism by weight reduction. Aust NZ J Med 3:410–412CrossRefGoogle Scholar
  6. Emmerson BT (1980) Uricosuric diuretics. Kidney Int 18:677–685CrossRefPubMedGoogle Scholar
  7. Faller J, Fox IH (1982) Ethanol-induced hyperuricemia. Evidence for increased urate production by activation of adenine nucleotide turnover. N Engl J Med 307:1598–1602CrossRefPubMedGoogle Scholar
  8. Farebrother DA, Hatfield P, Simmonds HA, Cameron JS, Jones AS, Cadenhead A (1975) Experimental crystal nephropathy (one year study in the pig). Clin Nephrol 4:243–250Google Scholar
  9. Gibson T, Rodgers V, Court-Brown F, Simmonds HA (1981) Dietary intake of gouty patients. Ann Rheum Dis 40:515CrossRefGoogle Scholar
  10. Howard RP, Alaupovic P, Brusco OJ, Furman RH (1963) Effects of ethylchlorophenoxyisobutyrate alone or with androsterone (Atromid) on serum lipids, lipoproteins and related metabolic parameters in normal and hyperlipidemic subjects. J Atheroscler Res 3:482–499CrossRefPubMedGoogle Scholar
  11. Keller Ch, Wolfram G, Zöllner N (1976) Die Behandlung von Hyperlipidämie und Hyperurikämie mit 2-Acetamidoäthyl-(4-chlorophenyl)-(3-trifluoro-methylphenoxy)-acetat (Halofenat), einem Derivat des Clofibrat. Arzneim Forsch 26:2221–2224Google Scholar
  12. Lang F, Greger R, Oberleithner H, Griss E, Lang K, Pastner D, Dittrich P, Deetjen P (1980) Renal handling of urate in healthy man, in hyperuricaemia and renal insufficiency: Circadian fluctuation, effect of water diuresis and of uricosuric agents. Eur J Clin Invest 10:285–292CrossRefPubMedGoogle Scholar
  13. Löffler W, Gröbner W, Zöllner H (1980) Influence of dietary protein on serum and urinary uric acid. Adv Exp Med Biol 122A:209–213CrossRefGoogle Scholar
  14. Löffler W, Gröbner W, Zöllner N (1981) Nutrition and uric acid metabolism: plasma level, turnover, excretion. Fortschr Urol Nephrol 16:8–18Google Scholar
  15. Löffler W, Gröbner W, Medina R, Zöllner N (1982) Influence of dietary purines on pool size, turnover and excretion of uric acid during balance conditions. Isotope studies using15N-uric acid. Res Exp Med (Berl) 181:113–123CrossRefGoogle Scholar
  16. Löffler W, Gröbner W, Medina R, Zöllner N (1983 a) Isotope studies of uric acid metabolism during dietary purine administration. Adv Exp Med Biol. In pressGoogle Scholar
  17. Löffler W, Gröbner W, Wolfram G, Zöllner N (1983 b) Die endogene Harnsäuresynthese des Menschen. Verh Dtsch Ges Inn Med 89. In pressGoogle Scholar
  18. May P, Lux B (1977) Gichtbehandlung und -prophylaxe mit Urikosurika. Dtsch Ärzteblatt 74:1593–1599Google Scholar
  19. Nicholls A, Scott JT (1972) Effect of weight-loss on plasma and urinary levels of uric acid. Lancet II:1223–1224CrossRefGoogle Scholar
  20. Nicholls A, Snaith ML, Scott JT (1973) Effect of oestrogen therapy on plasma and urinary levels of uric acid. Br Med J I:449–451CrossRefGoogle Scholar
  21. Phoon WH, Pincherle G (1972) Blood uric acid in executives. Br J Ind Med 29:334–337PubMedPubMedCentralGoogle Scholar
  22. Ravenscroft PJ, Hall GR, Ahokas JT, Emmerson BT, Tobert JA (1980) Indacrinone: Modification of diuretic, uricosuric, and kaliuretic actions by Amiloride. Clin Pharmacol Ther 28:45–51CrossRefPubMedGoogle Scholar
  23. Seegmiller JE, Grayzel AJ, Laster L, Liddle L (1961) Uric acid production in man. J Clin Invest 40:1304–1314CrossRefPubMedPubMedCentralGoogle Scholar
  24. Seegmiller JE, Rosenbloom FM, Kelley WN (1967) Enzyme defect associated with a sex — linked human neurological disorder and excessive purine synthesis. Science 155:1682–1684CrossRefPubMedGoogle Scholar
  25. Simmonds HA, Rising TJ, Cadenhead A, Hatfild PJ, Jones AS, Cameron JS (1973) Radioisotope studies of purine metabolism during administration of guanine and Allopurinol in the pig. Biochem Pharmacol 22:2553–2563CrossRefGoogle Scholar
  26. Simmonds HA, Warren DJ, Cameron JS, Potter CF, Farebrother DA (1980) Familial gout and renal failure in young women. Clin Nephrol 14:176–182PubMedGoogle Scholar
  27. Simmonds HA, Gibson T, Huston GJ, Webster DR, Rodgers AV, Munro J (1983) Tophaceous gout resistant to Allpurinol therapy: poor compliance or non-response. Adv Exp Med Biol. In pressGoogle Scholar
  28. Sorensen LB (1980) Gout secondary to chronic renal disease: studies on urate metabolism. Ann Rheum Dis 39:424–430CrossRefPubMedPubMedCentralGoogle Scholar
  29. Spann W (1982) Diät. In: Zöllner N (ed) Hyperurikämie und Gicht, Vol. 5. Springer, Berlin, Heidelberg, New York, pp 8–37CrossRefGoogle Scholar
  30. Sperling O, Persky-Brosh S, Boer P, de Vries A (1973) Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties. Biochem Med 7:389–395CrossRefPubMedGoogle Scholar
  31. Talbott JH (1981) It's gout until proven otherwise. Curr Rheumatol 2:1–7Google Scholar
  32. Van Goor W, Kooiker CJ, Dorhourt Mees EJ (1971) An unusual form of renal disease associated with gout and hypertension. J Clin Pathol 24:354–359CrossRefPubMedPubMedCentralGoogle Scholar
  33. Warren DJ, Simmonds HA, Gibson T, Naik RB (1981) Familial gout and renal failure. Arch Dis Child 56:699–704CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wyngaarden JB (1982) Inherited disorders of purine metabolism. Verh Dtsch Ges Inn Med 88:1254–1259Google Scholar
  35. Yü TF, Berger L (1982) Impaired renal function in gout. Its association with hypertensive vascular disease and intrinsic renal disease. Am J Med 72:95–100CrossRefPubMedGoogle Scholar
  36. Zöllner N, Gröbner W (1970) Der unterschiedliche Einfluß von Allopurinol auf die endogene und exogene Uratquote. Eur J Clin Pharmacol 3:56–58CrossRefGoogle Scholar
  37. Zöllner N, Gröbner W (1977) Dietary feedback regulation of purine and pyrimidine biosynthesis in man. Ciba Foundation Symposium 48:165–178PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • W. Löffler
    • 1
  • H. A. Simmonds
    • 2
  • W. Gröbner
    • 1
  1. 1.Medizinische Poliklinik der Universität MünchenGermany
  2. 2.Purine Laboratory, Clinical Science LaboratoriesGuy's HospitalLondon

Personalised recommendations