Applied Physics A

, Volume 61, Issue 5, pp 455–466 | Cite as

New concepts for controlled homoepitaxy

  • G. Rosenfeld
  • N. N. Lipkin
  • W. Wulfhekel
  • J. Kliewer
  • K. Morgenstern
  • B. Poelsema
  • G. Comsa


On the basis of a kinetic growth model we discuss new methods to grow atomically flat homoepitaxial layers in a controlled way. The underlying principle of these methods is to change the growth parameters during growth of an atomic layer in such a way that nucleation on top of a growing layer is suppressed, and thus, layer-by-layer growth is achieved. Experimentally, this can be realized by changing the substrate temperature or deposition rate during monolayer growth in a well-defined way. The same can be achieved at constant temperature and deposition rate by simultaneous ion bombardment during the early stages of growth of a monolayer, or by adding suitable surfactants to the system. Model experiments on Ag(111) and on Cu(111) using thermal energy atom scattering and scanning tunneling microscopy demonstrate the success of these methods.


68.55.—a 61.50.Cj 81.15.—z 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ehrlich, F.G. Hudda: J. Chem. Phys.44, 1039 (1966).Google Scholar
  2. 2.
    R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa: Phys. Rev. Lett.65, 733 (1990)Google Scholar
  3. 3.
    B. Poelsema, R. Kunkel, N. Nagel, A.F. Becker, G. Rosenfeld, L.K. Verheij, G. Comsa: Appl. Phys. A53, 369 (1991)Google Scholar
  4. 4.
    J. Tersoff, A.W. Denier van der Gon, R.M. Tromp: Phys. Rev. Lett.72, 266Google Scholar
  5. 5.
    G. Rosenfeld, B. Poelsema, G. Comsa: UnpublishedGoogle Scholar
  6. 6.
    The best way of growing atomically smooth layers is, of course, to raise the substrate temperature to such a value that adatoms are fast enough to reach the pre-existing steps before they can accumulate and nucleate on the terraces in between the steps at all. This growth mode is called step flow and isnot limited by the step-edge barrier, because no step crossing is required: Step flow is obtained if all atoms landing on a terrace attach to theAscending steps bordering the terrace. We will not discuss this growth mode further in this paper because it is in many respects desirable to achieve smooth growth on substrates as ideal as possible (i.e., with very low step densities), for which step. flow would require high temperaturesGoogle Scholar
  7. 7.
    R.L. Schwoebel, E.J. Shipsey: J. Appl. Phys.37, 3682 (1966)Google Scholar
  8. 8.
    M. Bott, T. Michely, G. Comsa: Surf. Sci.272, 161 (1992)Google Scholar
  9. 9.
    M. Villarba, H. Jonsson: Phys. Rev. B49, 2208 (1994) M. Villarba, H. Jonsson. Surf. Sci.317, 15 (1994)Google Scholar
  10. 10.
    J. Jacobsen, K.W. Jacobsen, P. Stoltze, J.K. Nørskov: Phys. Rev. Lett.74, 2295 (1995)Google Scholar
  11. 11.
    S. Esch, M. Hohage, T. Michely, G. Comsa: Phys. Rev. Lett.72, 518 (1994).Google Scholar
  12. 12.
    G. Rosenfeld, B. Poelsema, G. Comsa: J. Cryst. Growth151, 230 (1995)Google Scholar
  13. 13.
    B. Poelsema, G. Comsa:Scattering of Thermal Energy Atoms, Springer Tracts Mod. Phys., Vol. 115 (Springer, Berlin, Heidelberg 1989)Google Scholar
  14. 14.
    K.H. Besocke: Surf. Sci.181, 145 (1987)Google Scholar
  15. 15.
    Y. Suzuki, H. Kikuchi, N. Koshizuka: Jpn. J. Appl. Phys.27, L1175 (1988)Google Scholar
  16. 16.
    K. Meinel, M. Klaua, H. Bethge: J. Cryst. Growth89, 477 (1988) K. Meinel, M. Klaua, H. Bethge: Phys. Stat. Sol.110, 189 (1988)Google Scholar
  17. 17.
    H.A. van der Vegt, H.M. van Pinxteren, M. Lohmeier, E. Vlieg, J.M.C. Thornton: Phys. Rev. Lett.68, 3335 (1992)Google Scholar
  18. 18.
    G. Rosenfeld: Manipulation von Wachstumsmodi in der Homoepitaxie am Beispiel einer Ag(111)-Fläche. Dissertation, Forschungszentraum Jülich (1994)Google Scholar
  19. 19.
    G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, G. Comsa: Phys. Rev. Lett.71, 895 (1993)Google Scholar
  20. 20.
    For a three-level system and an ideal instrument, the coverage of the first layer close to monolayer completion is:\(\theta _1 = {{(1 + 2\theta + \sqrt {{I \mathord{\left/ {\vphantom {I {I_0 }}} \right. \kern-\nulldelimiterspace} {I_0 }}} )} \mathord{\left/ {\vphantom {{(1 + 2\theta + \sqrt {{I \mathord{\left/ {\vphantom {I {I_0 }}} \right. \kern-\nulldelimiterspace} {I_0 }}} )} 4}} \right. \kern-\nulldelimiterspace} 4}\) Google Scholar
  21. 21.
    Note that a similar direct evaluation of absolute intensities at ML coverage is not possible for the cases of no or little island density enhancement. First, there is no unique connection between the absolute anti-phase intensity and the layer distribution except for special cases like growth close to ideal 2D growth as manifested by the high quality oscillation of, e.g., Fig. 1d [18]. Second, the limited transfer width of the instrument affects the measured intensity for large structures, increasing the intensity above its ideal value. Its influence is therefore different for the different experiments of Fig. 1, being strongest for the conventional case which has the largest structuresGoogle Scholar
  22. 22.
    M. Henzler, T. Schmidt, E.Z. Luo: In:The Structure of Surfaces IV, ed. by X. D. Xie, S.Y. Tong, M.A. van Hove (World Scientific, Singapore 1994), p. 619Google Scholar
  23. 23.
    P.C. Dastoor, J. Ellis, A. Reichmuth, H. Bullman, B. Holst, W. Allison: Surf. Rev. Lett.1, 509 (1994)Google Scholar
  24. 24.
    W. Wulfhekel, N.N. Lipkin, J. Kliewer, G. Rosenfeld, L.C, Jorritsma, B. Poelsema, G. Comsa: Surf. Sci. (submitted)Google Scholar
  25. 25.
    K. Morgenstern, G. Rosenfeld, B. Poelsema, G. Comsa: Phys. Rev. Lett.74, 2058 (1995)Google Scholar
  26. 26.
    B. Poelsema, A.F. Becker, G. Rosenfeld, R. Kunkel, N. Nagel, L.K. Verheij, G. Comsa: Surf. Sci.272, 269 (1992)Google Scholar
  27. 27.
    From Venables' theory,n ∞ Ri/(i+2), wherei is the size of the critical nucleus J.A. Venables, G.D.T. Spiller, M. Hanbücken: Rep. Prog. Phys.47, 399 (1984) ForT=100 K we assumei=1, forT=150, 200 and 260 K,i=2 (see Appendix)Google Scholar
  28. 28.
    From Tersoff's theory for a high barrier and compact islands,θ c ∞ (n 1/n 2)5/7 where we have assumed the critical cluster to be a dimer (see Appendix)Google Scholar
  29. 29.
    V.A. Markov, O.P. Pchelgakov, L.V. Sokolov, S.I. Stenin, S. Stoyanov: Surf. Sci.250, 229 (1991)Google Scholar
  30. 30.
    A.K. Swan, J.F. Wendelken: Paper presented at the 41st Nat'l Symp. of the AVS, Denver (1994)Google Scholar
  31. 31.
    J.J. de Miguel, A. Sanchez, A. Cebollada, J.M. Gallego, J. Feron, S. Ferrer: Surf. Sci.189/190, 1062 (1987)Google Scholar
  32. 32.
    H.J. Ernst, F. Fabre, J. Lapujoulade: Surf. Sci.275, L682 (1992)Google Scholar
  33. 33.
    T. Michely, G. Comsa: Phys. Rev. B44, 8411 (1991)Google Scholar
  34. 34.
    T. Michely, C. Teichert: Phys. Rev. B50, 11156 (1994)Google Scholar
  35. 35.
    S. Esch, T. Michely, G. Comsa: Verhandl. DPG (VI)30, O 37.37 (1995)Google Scholar
  36. 36.
    Landolt-Börnstein New Series III/25 (Springer, Berlin, Heidelberg 1991) pp. 203, 231Google Scholar
  37. 37.
    S.E. Donelly: Vacuum28, 163 (1978)Google Scholar
  38. 38.
    P.A. Redhead, J.P. Hobson, E.V. Kornelsen:The Physical Basis of Ultrahigh Vacuum (Chapman & Hall, London 1968) p. 187Google Scholar
  39. 39a.
    J.A. Meyer, R.J. Behm: Phys. Rev. Lett.73, 364 (1994)Google Scholar
  40. 39b.
    G. Rosenfeld, B. Poelsema, G. Comsa: Phys. Rev. Lett.73, 365 (1994)Google Scholar
  41. 40.
    We note that the film morphology we observe here differs from the one shown by Vrijmoeth et al. under similar conditions [J. Vrijmoeth et al.: Phys. Rev. Lett.72, 3842 (1994)] If we correct for the different deposition rates the island density we measure is larger by a factor of 4–5 compared to the scan shown by Vrijmoeth et al. at a coverage of 0.6. Also the coverage at which nucleation on top of islands is observed is different: ≈ 0.4 ML in our case vs ≈ 0.55 ML as obtained by Vrijmoeth et al. The difference might be due to different evaporators used (in the evaporator used in our STM experiments, a small fraction of the Ag atoms is ionized), different crystal qualities (i.e., initial step separations: in our experiments greater than 10 000Å) or to different substrate temperatures (a higher temperature in the experiments by Vrijmoeth et al.). In any case, the island density we observe perfectly reproduces the island density in the earlier experiments by Meinel et al. Ref. [16].Google Scholar
  42. 41.
    K.L. Chopra:Thin Film Phenomena (McGraw-Hill, New York 1969) p. 230Google Scholar
  43. 12.
    E. Bauer, H. Poppa: Thin Solid Films12, 167 (1972)Google Scholar
  44. 13.
    R. Kern, G. LeLay, J.J. Metois: InCurrent Topics in Materials Science, Vol. 3, ed. by E. Kaldis (North-Holland, Amsterdam 1979) p. 382Google Scholar
  45. 44.
    Gaigher, N.G. van der Berg, J.B. Malherbe: Thin Solid Films12, 167Google Scholar
  46. 45.
    W.F. Egelhoff, Jr., D.A. Steigerwald: J. Vac. Sci. Technol. A,7, 2167 (1989)Google Scholar
  47. 46.
    M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp: Phys. Rev. Lett.63, 632Google Scholar
  48. 47.
    K. Fujita, S. Fukatso, H. Yaguchi, Y. Shiraki, R. Ito: Jpn. J. Appl. Phys.29 L1981 (1990)Google Scholar
  49. 48.
    R.M. Tromp, M.C. Reuter: Phys. Rev. Lett.68, 984 (1992)Google Scholar
  50. 49.
    D.J. Eaglesham, F.C. Unterwald, D.C. Jacobson: Phys. Rev. Lett.70, 933 (1993)Google Scholar
  51. 50.
    M. Horn-von Hoegen: Appl. Phys. A59, 503 (1994)Google Scholar
  52. 51.
    B. Voigtländer, A. Zinner: Surf. Sci.292, L775 (1993)Google Scholar
  53. 52.
    S. Oppo, V. Fiorentini, M. Scheffler: Phys. Rev. Lett.71, 2437 (1993)Google Scholar
  54. 53.
    J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg, R.J. Behm: Phys. Rev. Lett.72, 3842 (1994)Google Scholar
  55. 54.
    V. Fiorentini, S. Oppo, M. Scheffler: Appl. Phys. A60, 399 (1995)Google Scholar
  56. 55.
    A.F. Becker: Die ersten Stadien des Schichtwachstums von Pt auf Pt(111) sowie Ag auf Pt(111) untersucht mittels der Streuung thermischer Heliumatome. Dissertation, Forschungszentrum Jülich (1994)Google Scholar
  57. 56.
    T. Michely, M. Hohage, S. Esch, G. Comsa: Phys. Rev. Lett (submitted)Google Scholar
  58. 57.
    B. Poelsema, A.F. Becker, G. Rosenfeld, R. Kunkel, L.K. Verheij, G. Comsa: UnpublishedGoogle Scholar
  59. 58.
    M. Bott, M. Hohage, T. Micnely, G. Comsa: Phys. Rev. Lett.70, 1489 (1993)Google Scholar
  60. 59.
    J.E. Greene, S.A. Barnett, J.-E. Sundgren, A. Rockett: In:Ion Beam Assisted Film Growth, ed. by T. Itoh (Elsevier, Amsterdam 1989) p. 101Google Scholar
  61. 60.
    J.K. Hirvonen: Mater. Sci. Rep.6, 215 (1991)Google Scholar
  62. 61.
    D.B. Chrisey, G.K. Hubler (eds.).Pulsed Laser Deposion of Thin Films (Wiley, New York 1994)Google Scholar
  63. 62.
    J.A. Venables, G.D.T. Spiller, M. Hanbücken: Rep. Prog. Phys.47, 399 (1984)Google Scholar
  64. 63.
    E.Z. Luo, J. Wollschläger, F. Wegner, M. Henzler: Appl. Phys. A60, 19 (1995)Google Scholar
  65. 64.
    W.K. Rilling, C.M. Gilmore, T.D. Andreadis, J.A. Sprague: Cdn J. Phys.68, 1035 (1990)Google Scholar
  66. 65.
    C.L. Liu, J.M. Cohen, J.B. Adams, A.F. Voter: Surf. Sci.253, 334 (1991)Google Scholar
  67. 66.
    R.C. Nelson, T.L. Einstein, S.V. Khare, P.J. Rous: Surf. Sci.295, 462 (1993)Google Scholar
  68. 67.
    P. Stoltze: J. Phys. Condens. Matter6, 9495 (1994)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. Rosenfeld
    • 1
  • N. N. Lipkin
    • 1
  • W. Wulfhekel
    • 1
  • J. Kliewer
    • 1
  • K. Morgenstern
    • 1
  • B. Poelsema
    • 2
  • G. Comsa
    • 1
  1. 1.Institut für Grenzflächenforschung und VakuumphysikForschungszentrum Jülich GmbHJülichGermany
  2. 2.Faculty of Applied Physics and Centre for Materials Research (CMO)University of TwenteEnschedeThe Netherlands

Personalised recommendations