Advertisement

Operations-Research-Spektrum

, Volume 18, Issue 4, pp 209–217 | Cite as

On Haar's dual problem

  • M. A. Goberna
  • V. Jornet
Theoretical Papers

Abstract

This paper emphasizes the great potential applicability of the so-called Haar's dual problem, in linear semi-infinite programming, and analyzes its properties in order to its reduction to an ordinary linear program, its sequential approximation through finite subprograms, as well as to its numerical solution by feasible directions strategies.

Key words

Semi-infinite programming duality 

Zusammenfassung

Diese Arbeit unterstreicht die Anwendbarkeit des sogenannten Dualproblems von Haar in linearer semi-infiniter Optimierung und analysiert seine Eigenschaften. Dies geschieht im Hinblick auf eine Reduktion in ein gewöhnliches lineares Optimierungsproblem, eine sequentielle Approximation durch endliche Teilprobleme und auch zum Finden einer numerischen Lösung durch Verfahren der zulässigen Richtungen.

Schlüsselwörter

Semi-infinite Programmierung Dualität 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson EJ, Nash P (1987) Linear Programming in Infinite-Dimensional Spaces. John Wiley & Sons, Chichester New York Brisbane Toronto SingaporeGoogle Scholar
  2. 2.
    Berskanskij IM (1974) Application of the inverse matrix method to the solution of linear programming problems with an infinite set of vectorial conditions. In Mathematical Methods in Economic Investigations. MR 48 □ 13245, MoscowGoogle Scholar
  3. 3.
    Blum E, Oettli W (1975) Mathematische Optimierung. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Charnes A, Cooper WW, Kortanek KO (1962) Duality, Haar programs and finite sequence spaces. Proc Nat Acad Sci USA 48: 783–786Google Scholar
  5. 5.
    Charnes A, Cooper WW, Kortanek KO (1963) Duality in semi-infinite programs and some works of Haar and Carathéodory. Manag Sci 9: 209–228Google Scholar
  6. 6.
    Charnes A, Cooper WW, Kortanek KO (1969) On the theory of semi-infinite programming and a generalization of the Kuhn-Tucker saddle point theorem for arbitrary convex functions. Nav Res Log 16: 41–51Google Scholar
  7. 7.
    Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2: 429–444Google Scholar
  8. 8.
    Debreu G (1951) The coefficient of resource utilization. Econometrica 19: 273–292Google Scholar
  9. 9.
    Farrell MJ (1957) The measurement of production efficiency. J Royal Stat Soc Ser A General 120: 253–281Google Scholar
  10. 10.
    Fischer T (1991) Strong unicity and alternation for linear optimization. J Opt Theor Appl 69: 251–267Google Scholar
  11. 11.
    Glashoff K (1979) Semi-infinite programming. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Glashoff K, Gustafson SÅ (1983) Linear Optimization and Approximation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Goberna MA, Jornet V (1988) Geometric fundamentals of the simplex method in semi-infinite programming. OR Spektrum 10: 145–152Google Scholar
  14. 14.
    Goberna MA, Lopez MA (1987) Reduction and discrete approximation in linear semi-infinite programming. Optimization 18: 643–658Google Scholar
  15. 15.
    Hakimi SL (1963) Optimum distribution of switching centers and the absolute centers and medians of a graph. Oper Res 12: 450–459Google Scholar
  16. 16.
    Hettich R, Kortanek KO (1993) Semi-infinite programming: Theory, methods and applications. SIAM Rev 35: 380–425Google Scholar
  17. 17.
    Hettich R, Zencke P (1982) Numerische Methoden der Approximation und Semi-Infiniten Optimierung. Teubner, StuttgartGoogle Scholar
  18. 18.
    Juhnke F (1988) Inradius and Dicke konvexer Körper aus optimierungstheoretischer Sicht. Beiträge Algebra Geom 27: 13–20Google Scholar
  19. 19.
    Juhnke F (1989) Das Umkugelproblem und lineare semi-infinite Optimierung. Beiträge Algebra Geom 28: 147–156Google Scholar
  20. 20.
    Karlin S, Studden WJ (1966) Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience, New York London SidneyGoogle Scholar
  21. 21.
    Klostermair A (1976) Austauschalgorithmen zur Lösung konvexer Optimierungsaufgaben. Diplomarbeit, Univ. MünchenGoogle Scholar
  22. 22.
    Kortanek KO (1977) Constructing a perfect duality in infinite programming. Appl Math Opt 3: 357–372Google Scholar
  23. 23.
    Kortanek KO, Strojwas HM (1985) On constraint sets of infinite linear programs over ordered fields. Math Progr 20: 129–143Google Scholar
  24. 24.
    Kosmol P (1991) Optimierung und Approximation. W. de Gruyter, Berlin New YorkGoogle Scholar
  25. 25.
    Lewis AS (1993) Consistency of moment systems. Department of combinatorics and optimization. University of Waterloo, Waterloo, Ontario, Canada (12 August), pp 1–32Google Scholar
  26. 26.
    Lovell CAK (1994) Linear programming approaches to the measurement and analysis of productive efficiency. Tr Inv Operativa 2: 175–223Google Scholar
  27. 27.
    Nash P (1984) Algebraic fundamentals of linear programming. In: Anderson EJ, Philpott A (eds) Infinite programming. Springer, Berlin Heidelberg New York, pp 37–52Google Scholar
  28. 28.
    Roth R (1969) Computer solutions to minimum-cover problems. Oper Res 17: 455–465Google Scholar
  29. 29.
    Rubinstein GS (1981) A comment on Voigt's paper “A duality theorem for linear semi-infinite programming” (in russian). Optimization. Academic Press, Orlando LondonGoogle Scholar
  30. 30.
    Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multi-objective optimization. Academic Press, Orlando LondonGoogle Scholar
  31. 31.
    Seiford LH (1990) A bibliography of data envelopment analysis (1978–1990). Department of Industrial Engineering and Operations Research. University of Massachusetts, Amherst, MassachusettsGoogle Scholar
  32. 32.
    Voigt H (1981) Ein Dualitätssatz der semi-infiniten linearen Optimierung. Optimization 12: 27–30Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. A. Goberna
    • 1
  • V. Jornet
    • 1
  1. 1.Department of Statistics and Operations ResearchUniversity of AlicanteAlicanteSpain

Personalised recommendations