Skip to main content
Log in

Heat transfer characteristics of a continuous stretching surface

Wärmeübergangsverhalten einer verstreckten Endlosfläche

  • Originalarbeiten
  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The similarity solutions for the governing ordinary differential equations of the boundary layer corresponding to a stretching surface have been reported. Power law velocity and temperature distribution were assumed for velocity exponent 3≥m≥−0.41176, −1.1≥m≥−3, and for temperature exponent 3≥n≥−3. Solutions have been found forn=0 and allm where heat transferred from the stretching surface to the ambient. The direction and amount of heat flow were found to be dependent on the magnitude ofn andm for the same Prandtl number. Nusselt number increases with increasingm andPr for uniform and variable surface temperature however, for uniform surface heat flux it decreases with increasingm for constantPr.

Zusammenfassung

Es werden die Ähnlichkeitslösungen für die bestimmenden gewöhnlichen Grenzschichtdifferentialgleichungen bezüglich einer verstreckten Oberfläche mitgeteilt. Für Geschwindigkeits-und Temperaturverteilungen gelten Potenzansätze mit den Exponenten 3≥m≥−0,41176 und −1,1≥m≥−3 für das Geschwindigkeitsprofil und 3≥n≥−3 für das Temperaturprofil. Fürn=0 und allem ließen sich Lösungen finden; dabei floß Wärme von der verstreckten Fläche an die Umgebung. Es zeigte sich, daß Höhe und Richtung des Wärmestroms bei gleicher Prandtl-Zahl von den Werten fürn undm abhängen. Die Nußelt-Zahl wächst mit steigendemm undPr bei gleichförmiger und veränderlicher Oberflächentemperatur; sie fällt bei gleichförmigem Wärmefluß, wennm bei konstantemPr zunimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

constant

f :

dimensionless stream function

G :

dimensionless temperature [=(TT )/(T w T )] for uniform and variable temperature;\(\left[ { = k\left( {T - T_\infty } \right)/xq_w \sqrt {\left( {2/\left( {1 + m} \right)} \right)} } \right]\) for uniform heat flux

k :

thermal conductivity

m :

velocity exponent parameter

n :

temperature exponent parameter

Nu :

Nusselt number [=h x/k]

Pr :

Prandtl number [=ν/α]

Re :

Reynolds number [=U 0 x (m+1)/ν]

T :

temperature

u :

velocity component inx-direction

U 0 :

constant

v :

velocity component iny-direction

x :

coordinate in direction of surface motion

y :

coordinate in direction normal to surface motion

α :

thermal diffusivity

η :

dimensionless similarity variable\(\left[ { = y\sqrt {\left( {\left( {m + 1} \right)/2} \right)} \sqrt {\left( {U_0 x^{m - 1} /v} \right)} } \right]\)

ν :

kinematic viscosity

w :

condition at the surface

∞:

condition at ambient medium

′:

differentiation with respect toη

References

  1. Sakiadis, B. C.: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. A.I.Ch.E. Journal 7 (1961) 26–28

    Google Scholar 

  2. Sakiadis, B. C.: Boundary-layer behavior on continuous solid surfaces: II. The Boundary layer on a continuous flat surface. A.I.Ch.E. Journal 7 (1961) 221–225

    Google Scholar 

  3. Sakiadis, B. C.: Boundary-layer behavior on continuous solid surfaces. III. The Boundary layer on a continuous cylindrical surface. A.I.Ch.E. Journal 7 (1961) 467–472

    Google Scholar 

  4. Tsou, F. K.; Sparrow, E. M.; Goldstein, R. J.: Flow and heat transfer in the boundary layer on a continuous moving surface. I. J. Heat Mass Transfer 10 (1967) 219–235

    Google Scholar 

  5. Crane, L. J.: Flow paste a stretching plane. Z. Angew. Math. Phys. 21 (1970) 645–647

    Google Scholar 

  6. Vleggaar, J.: Laminar boundary-layer behavior on continuous accelerating surfaces. Chemical Engineering Science 32 (1977) 1517–1525

    Google Scholar 

  7. Gupta, P. S.; Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction or blowing. Canadian Journal of Chemical Engineering 55 (1977) 744–746

    Google Scholar 

  8. Soundalgekar, V. M.; Ramana Murty, T. V.: Heat transfer past a continuous moving plate with variable temperature. Wärme- und Stoffübertragung 14 (1980) 91–93

    Google Scholar 

  9. Grubka, L. G.; Bobba, K. M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. of Heat Transfer 107 (1985) 248–250

    Google Scholar 

  10. Banks, W. H. H.: Similarity solutions of the boundary-layer equations for a stretching wall. Journal de Mecanique Theorique et Appliquee 2 (1983) 375–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.E. Heat transfer characteristics of a continuous stretching surface. Warme - Und Stoffubertragung 29, 227–234 (1994). https://doi.org/10.1007/BF01539754

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539754

Keywords

Navigation