Applied Physics A

, Volume 60, Issue 4, pp 347–363

Hydrogen on Si: Ubiquitous surface termination after wet-chemical processing

  • G. J. Pietsch
Invited Paper

Abstract

The manufacture of microelectronic devices based on silicon technology is largely dominated by wet chemical processes. By ultraclean sample preparation in air and a fast transfer into UltraHigh Vacuum (UHV) we open up a way for the atomic-scale structural and chemical characterization of silicon surfaces immediately after wet-chemical processing. Using Scanning Tunneling Microscopy (STM), ThermoDesorption (TDS) and InfraRed Spectroscopy (IRS), we find that a surface termination predominantly by hydrogen results from all the different wet-chemical treatments investigated (etching with hydrofluoric acid, rinsing with hot water, chemomechanical polishing)-despite the different chemical ambients and process parameters involved. Microscopically, a crystallographically preferential attack of the silicon is observed in all these processes which results, to a different extent, in anisotropic defect structures on the surfaces. This is explained by an interplay of aqueous reaction kinetics and sterical hindrance on the silicon surface. It is pointed out how a UHV surface analysis of the micromorphology of wet-chemically treated silicon surfaces, so far carried out mostly on Si(111) due to its easier preparation and experimental accessability, may help to provide the in-depth understanding of the atomic-scale mechanisms during wet-chemical processing demanded by the progressing miniaturization of microelectronic devices. The atomically smoother and chemically more homogeneous Si(111) obtained after preferential etching with NH4F suggests that in future applications Si(111) may gain importance over Si(100), which still dominates in today's semiconductor technology, since future devices increasingly rely on tailor-made and “ideal” properties on an atomic scale. Due to their structural and chemical simplicity and well-controlable characteristics, H-teminated surfaces after wet-chemical preparation also form ideal substrates for conventional UHV surface studies such as absorption and MBE-growth experiments.

PACS

61.16.Di 81.60.Cp 68.35.Bs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Grundner, D. Gräf, P. O. Hahn, A. Schnegg: Solid State Technol.34, 69 (1991)Google Scholar
  2. 2.
    G.S. Higashi, Y.J. Chabal: InHandbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications, ed. by W. Kern (Noyes, Park Ridge, NJ 1993), p. 423Google Scholar
  3. 3.
    G.S. Higashi, Y.J. Chabal, K. Raghavachari, R.S. Becker, M.P. Green, K. Hanson, T. Boone, J.H. Eisenberg, S.F. Shive, G.N. DiBello, K.L. Fulford: In:Proc. 1993 Spring Meeting Electrochem. Soc. (Electrochem. Soc., Pennington, NJ 1993) (in press)Google Scholar
  4. 4.
    G.J. Pietsch, U. Köhler, M. Henzler: Mat. Res. Soc. Symp. Proc.315, 497 (1993).Google Scholar
  5. 5.
    M. Grundner, H. Jacob: Appl. Phys. A39, 73 (1986)Google Scholar
  6. 6.
    W. Kern, D.A. Puotinen: RCA Rev.31, 187 (1970).Google Scholar
  7. 6a.
    W. Kern: Semicond. Int'l (April 1984) p. 94Google Scholar
  8. 6b.
    W. Kern: J. Electrochem. Soc.137, 1887 (1990)Google Scholar
  9. 7.
    D. Gräf, M. Grundner, R. Schulz: J. Vac. Sci. Technol. A7, 808 (1989)Google Scholar
  10. 8.
    E. Mendel: Solid State Technol.10, 27 (1967)Google Scholar
  11. 9.
    R. Iscoff: Semicond. Int'l (May 1993) p. 72Google Scholar
  12. 9a.
    W.J. Patrick, W.L. Guthrie, C.L. Standley, P.M. Schiable: J. Electrochem. Soc.138, 1778 (1991)Google Scholar
  13. 10.
    V. Lehmann, H. Föll: J. Electrochem. Soc.137, 653 (1990)Google Scholar
  14. 11.
    G.J. Pietsch, U. Köhler, M. Henzler: J. Vac. Sci. Technol. B12, 78 (1994)Google Scholar
  15. 12.
    N.J. Harrick:Internal Reflection Spectroscopy (Wiley, New York 1967)Google Scholar
  16. 13.
    G.J. Pietsch, U. Köhler, M. Henzler: J. Appl. Phys.73, 4797 (1993)Google Scholar
  17. 14.
    T. Takahagi, I. Nagai, A. Ishitani, H. Kuroda, Y. Nagasawa: J. Appl. Phys.64, 3516 (1988)Google Scholar
  18. 14a.
    M. Tabe: Appl. Phys. Lett.45, 1073 (1984)Google Scholar
  19. 15.
    F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserijan: J. Vac. Sci. Technol.16, 1443 (1979)Google Scholar
  20. 16.
    U. Köhler, O. Jusko, G.J. Pietsch, B. Müller, M. Henzler: Surf. Sci.248, 321 (1991)Google Scholar
  21. 17.
    M. Niwa, H. Iwasaki, S. Hasegawa: J. Vac. Sci. Technol. A,8, 266 (1990)Google Scholar
  22. 18.
    H.E. Hessel, A. Feltz, M. Reiter, U. Memmert, R.J. Behm: Chem. Phys. Lett.186, 275 (1991)Google Scholar
  23. 19.
    P.A.M. van der Heide, M.J. Bean, H.J. Ronde: J. Vac. Sci. Technol. A8, 266 (1990)Google Scholar
  24. 20.
    D. Gräf, M. Grundner, R. Schulz, L. Mühlhoff: J. Appl. Phys.68, 5155 (1990)Google Scholar
  25. 21.
    U. Neuwald, H. E. Hessel, A. Feltz, U. Memmert, R.J. Behm: Appl. Phys. Lett.60, 1307 (1992)Google Scholar
  26. 22.
    M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada: J. Appl. Phys.68, 1272 (1990)Google Scholar
  27. 23.
    M.J. Bozack, M.J. Dressler, W.J. Choyke, P.A. Taylor, J.T. Yates; Jr., Surf. Sci.184, L332 (1987)Google Scholar
  28. 24.
    G.J. Pietsch: InFortschritt-Berichte VDI, Reihe 9: Elektronik, No. 148 (VDI Düsseldorf 1992)Google Scholar
  29. 25.
    P.O. Hahn, M. Henzler: J. Appl. Phys.52, 4122 (1981)Google Scholar
  30. 25a.
    P.O. Hahn, M. Henzler: J. Vac. Sci. Technol. A2, 574 (1984)Google Scholar
  31. 25b.
    P.O. Hahn: InThin Films—Interfaces and Phenomena, ed. by R.J. Nemanich, P.S. Ho: Mat. Res. Soc. Symp. Proc. Vol.54, 645 (1986) P.O. Hahn, M. Grundner, A. Schnegg, H. Jacob: Appl. Surf. Sci.39, 436 (1989)Google Scholar
  32. 26.
    Y. Nakagawa, A. Ishitani, T. Takahagi, H. Kuroda, H. Tokumoto, M. Ono, K. Kajimura: J. Vac. Sci. Technol. A8, 262 (1990)Google Scholar
  33. 27.
    R.S. Becker, G.S. Higashi, Y.J. Chabal, A.J. Becker: Phys. Rev. Lett.65, 1917 (1990)Google Scholar
  34. 28.
    U. Memmert, R.J. Behm: InAdv. Solid State Phys. 31, 189 (Vieweg, Braunschweig 1991)Google Scholar
  35. 29.
    Y. Kim, C.M. Lieber: J. Am. Chem. Soc.113, 2333 (1991)Google Scholar
  36. 30.
    R.C. Henderson: J. Electrochem. Soc.119, 772 (1972)Google Scholar
  37. 30a.
    S.I. Raider, R. Flitsch, M.J. Palmer: J. Electrochem. Soc.122, 413 (1975)Google Scholar
  38. 31.
    B.F. Phillips: J. Vac. Sci. Technol. A1, 646 (1983)Google Scholar
  39. 31a.
    A. Ishizaka, Y. Shiraki: J. Electrochem. Soc.133, 666 (1986)Google Scholar
  40. 32.
    R. Williams, A.M. Goodman: Appl. Phys. Lett.25, 531 (1974)Google Scholar
  41. 33.
    V.A. Burrows, Y.J. Chabal, G.S. Higashi, K. Raghavachari, S.B. Christman: Appl. Phys. Lett.53, 998 (1988)Google Scholar
  42. 34.
    H. Ubara, T. Imura, A. Hiraki: Solid State Commun.50, 673 (1984)Google Scholar
  43. 35.
    E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, T.B. Bright: Phys. Rev. Lett.57, 249 (1986)Google Scholar
  44. 36.
    D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, R.H. Schumm:Selected Values of Chemical Thermodynamics Properties (National Bureau of Standards, Washington, DC 1968)Google Scholar
  45. 37.
    K. Raghavachari, G.S. Higashi, Y.J. Chabal, G.W. Trucks: Mat. Res. Soc. Symp. Proc.315, 437 (1993)Google Scholar
  46. 38.
    B.R. Weinberger, G.G. Peterson, T.L. Eschrich, H.A. Krasinski: J. Appl. Phys.60, 3232 (1986)Google Scholar
  47. 39.
    G.W. Trucks, K. Raghavachari, G.S. Higashi, Y.J. Chabal: Phys. Rev. Lett.65, 504 (1990)Google Scholar
  48. 40.
    G.J. Pietsch, U. Köhler, O. Jusko, M. Henzler, P.O. Hahn: Appl. Phys. Lett.60, 1321 (1992)Google Scholar
  49. 41.
    W. Hoffmeister: Int'l J. Appl. Radiat. Isot.2, 139 (1969)Google Scholar
  50. 42.
    Y. Morita, K. Miki, H. Tokumoto: Appl. Phys. Lett.59, 1347 (1991); Jpn. J. Appl. Phys.30, 3570 (1991); Ultramicrosc.42–44, 922 (1992)Google Scholar
  51. 42a.
    M. Niwano, Y. Takeda, Y. Ishibashi, K. Kurita, N. Miyamoto: J. Appl. Phys.71, 5646 (1992)Google Scholar
  52. 43.
    Y.J. Chabal, G.S. Higashi, K. Raghavachari, V.A. Burrows: J. Vac. Sci. Technol. A7, 2104 (1989)Google Scholar
  53. 44.
    B.G. Koehler, C.H. Mak, D.A. Arthur, P.A. Coon, S.M. George: J. Chem. Phys.89, 1709 (1988)Google Scholar
  54. 45.
    P. Gupta, V.L. Colvin, S.M. George: Phys. Rev. B37, 8234 (1988)Google Scholar
  55. 46.
    C.C. Cheng, J.T. Yates, Jr.: Phys. Rev. B43, 4041 (1991)Google Scholar
  56. 46a.
    C.M. Greenlief, S.M. Gates, P.A. Holbert: Chem. Phys. Lett.159, 202 (1989)Google Scholar
  57. 47.
    R.S. Becker, J.A. Golovchenko, G.S. Higashi, B.S. Swartzentruber: Phys. Rev. Lett.57, 1020 (1986)Google Scholar
  58. 48.
    G. Schulze, M. Henzler: Surf. Sci.124, 336 (1983)Google Scholar
  59. 49.
    Y.J. Chabal, G.S. Higashi, S.B. Christman: Phys. Rev. B28, 4472 (1983)Google Scholar
  60. 50.
    N. Hirashita, M. Kinoshita, I. Aikawa, T. Ajioka: Appl. Phys. Lett.56, 451 (1990)Google Scholar
  61. 51.
    G.A. Reider, U. Höfer, T.F. Heinz: J. Chem. Phys.94, 4080 (1991)Google Scholar
  62. 52.
    T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe: IEEE Trans. ED-39, 537 (1992)Google Scholar
  63. 53.
    G.S. Higashi, R.S. Becker, Y.J. Chabal, A.J. Becker: Appl. Phys. Lett.58, 1656 (1991)Google Scholar
  64. 54.
    G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari: Appl. Phys. Lett.56, 656 (1990)Google Scholar
  65. 55.
    G.J. Pietsch, U. Köhler, M. Henzler: Chem. Phys. Lett.197, 346 (1992)Google Scholar
  66. 56.
    P. Jakob, Y.J. Chabal: J. Chem. Phys.95, 2897 (1991)Google Scholar
  67. 57.
    M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, K. Suma: Appl. Phys. Lett.55, 562 (1989)Google Scholar
  68. 58.
    G.J. Pietsch, M. Henzler, P.O. Hahn: Appl. Surf. Sci.39, 457 (1989)Google Scholar
  69. 59.
    J.H. Eisenberg, S.F. Shive, F. Stevie, G.S. Higashi, T. Boone, K. Hanson, J.B. Sapjeta, G.N. DiBello, K.L. Fulford: Mater. Res. Soc. Symp. Proc.315, 485 (1993)Google Scholar
  70. 60.
    S. Watanabe, M. Shigeno, N. Nakayama, T. Ito: Appl. Phys. Lett.59, 1458 (1991)Google Scholar
  71. 60b.
    S. Watanabe, M. Shigeno, N. Nakayama, T. Ito: Jpn. J. Appl. Phys.30, 3575 (1991)Google Scholar
  72. 60c.
    S. Watanabe, K. Horiuchi, T. Ito: Mater. Res. Soc. Symp. Proc.315, 447 (1993)Google Scholar
  73. 61.
    Y. Morita, K. Miki, H. Tokumoto: InExt. Abstr. 1991 Int'l Conf. Solid State Devices Mater., Yokohama (1991) p. 499Google Scholar
  74. 62.
    K. Sugiyama, T. Igarashi, K. Moriki, Y. Nagasawa, T. Aoyama, R. Sugino, T. Ito, T. Hattori: Jpn. J. Appl. Phys.29, L2401 (1990)Google Scholar
  75. 62a.
    H. Ogawa, N. Terada, K. Sugiyama, K. Moriki, N. Miyata, T. Aoyama, R. Sugino, T. Ito, T. Hattori: Appl. Surf. Sci.56–58, 836 (1992)Google Scholar
  76. 62b.
    H. Ogawa, T. Hattori: IEICE Trans. E75-C, 774 (1992)Google Scholar
  77. 63.
    A.J. Pidduck, V. Nayar: Appl. Phys. A53, 557 (1991)Google Scholar
  78. 63a.
    T. Abe, E.F. Steigmeier, W. Hagleitner, A.J. Pidduck: Jpn. J. Appl. Phys.31, 722 (1992)Google Scholar
  79. 63b.
    S. Hahn, K. Kugimiya, K. Vojtechovsky, M. Sifalda, M. Yamashita, P.R. Blaustein, K. Takahashi: Semicond. Sci. Technol.7, A80 (1992)Google Scholar
  80. 63c.
    J. Warnock: J. Electrochem. Soc.138, 2398 (1991)Google Scholar
  81. 63d.
    S. Kimura, J. Mizuki, J. Matsui, T. Ishikawa: Appl. Phys. Lett.60, 2604 (1992)Google Scholar
  82. 64.
    G.J. Pietsch, G.S. Higashi, Y.J. Chabal: Appl. Phys. Lett.64, 3115 (1994)Google Scholar
  83. 64a.
    G.J. Pietsch. Y.J. Chabal, G.S. Higashi: J. Appl. Phys. (submitted)Google Scholar
  84. 65.
    A. Schnegg, I. Lampert, H. Jacob: Electrochem. Soc. Ext. Abstr.85-1, 394 (1985)Google Scholar
  85. 65a.
    A. Schnegg, H. Prigge, M. Grundner, P.O. Hahn, H. Jacob: Mater. Res. Soc. Symp. Proc.104, 291 (1988)Google Scholar
  86. 66.
    Y.J. Chabal: Surf. Sci. Rep.8, 211 (1988); Physica B170, 447 (1991); J. Molecul. Struct.292, 65 (1993)Google Scholar
  87. 67.
    P. Jakob, Y.J. Chabal, K. Raghavachari, P. Dumas, S.B. Christman: Surf. Sci.285, 251 (1993)Google Scholar
  88. 67a.
    P. Jakob, Y.J. Chabal, K. Raghavachari: Chem. Phys. Lett.187, 325 (1991)Google Scholar
  89. 68.
    P. Dumas, Y.J. Chabal, P. Jakob: Surf. Sci.269/270, 867 (1992)Google Scholar
  90. 69.
    J.A. Schäfer, D. Frankel, F. Stucki, W. Göpel, G.J. Lapeyre: Surf. Sci.139, L209 (1984)Google Scholar
  91. 70.
    P. Allongue: In:Adv. Electrochem. Sci. Engin., ed. by H. Gerischer, C.W. Tobias, Vol. 4 (VCH, Weinheim, Germany) (in press)Google Scholar
  92. 71.
    O.M. Magnussen, J. Hotlos, G. Beitel, D.M. Kolb, R.J. Behm: J. Vac. Sci. Technol. B9, 969 (1991)Google Scholar
  93. 71a.
    S.-L. Yau, X. Gao, S.-C. Chang, B.C. Schardt, M.J. Weaver: J. Am. Chem. Soc.113, 6049 (1991)Google Scholar
  94. 71b.
    X. Gao, A. Hamelin, M.J. Weaver: Phys. Rev. Lett.67, 618 (1991)Google Scholar
  95. 72.
    R. Houbertz, U. Memmert, R.J. Behm: Appl. Phys. Lett.58, 1027 (1991)Google Scholar
  96. 73.
    K. Itaya, R. Sugawara, Y. Morita, H. Tokumoto: Appl. Phys. Lett.60, 2534 (1992)Google Scholar
  97. 74.
    S.-L. Yau, F.F. Fan, A.J. Bard: J. Electrochem. Soc.139, 2825 (1992)Google Scholar
  98. 75.
    M.J. Eddowes: J. Electroanal. Chem.280, 297 (1990)Google Scholar
  99. 76.
    R. Houbertz, U. Memmert, R.J. Behm: Appl. Phys. Lett.62, 2516 (1993)Google Scholar
  100. 77.
    P.O. Hahn, M. Kerstan: SPIE Proc.1009, 172 (1988)Google Scholar
  101. 78.
    J. Rappich, H.J. Lewerenz, H. Gerischer: J. Electrochem. Soc. Lett.140, 187 (1993)Google Scholar
  102. 79.
    P. Allongue, H. Brune, H. Gerischer: Surf. Sci.275, 414 (1992)Google Scholar
  103. 79a.
    P. Allongue, V. Costa-Kieling, H. Gerischer: J. Electrochem. Soc.140, 1009 (1993);ibid. p. 1018Google Scholar
  104. 80.
    M. Weimer, J. Kramer, J.D. Baldeschwieler: Phys. Rev. B.39, 5572 (1989)Google Scholar
  105. 80a.
    W.J. Kaiser, L.D. Bell, M.H. Hecht, F.J. Grunthaner: J. Vac. Sci. Technol. A6, 519 (1988)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. J. Pietsch
    • 1
  1. 1.Philips-UniversitätMarburgGermany

Personalised recommendations