Applied Physics A

, Volume 61, Issue 3, pp 229–236 | Cite as

Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

  • V. V. Krylov
Article

Abstract

A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

PACS

43.20 43.35 43.35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova:Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York 1971)Google Scholar
  2. 2.
    R.F. Wallis: Prog. Surf. Sci.4, 233 (1973)Google Scholar
  3. 3.
    K.L. Shopra:Thin Film Phenomena (McGraw-Hill, New York 1969)Google Scholar
  4. 4.
    G.S. Benson, K.S. Yun: InThe Solid-Gas Interface, ed. by E.A. Flood, Vol. 1 (Dekker, New York 1967) p. 203Google Scholar
  5. 5.
    B.K. Sinha, W.J. Tanski, T. Lukaszek, A. Ballato: J. Appl. Phys.57, 767 (1985)Google Scholar
  6. 6.
    A. Neubrand, P. Hess: J. Appl. Phys.71, 227 (1992)Google Scholar
  7. 7.
    A. Snow, H. Wohltjen: Anal. Chem.56, 1411 (1984)Google Scholar
  8. 8.
    L.D. Landau, E.M. Lifshits:Theory of Elasticity (Pergamon, Oxford (1986)Google Scholar
  9. 9.
    R. Shuttleworth: Proc. R. Phys. Soc. A63, 444 (1950)Google Scholar
  10. 10.
    C. Herring: InStructure and Properties of Solid Surfaces, ed. by R. Gomer, G.S. Smith (The Univ. Chicago Press, Chicago 1953) p. 5Google Scholar
  11. 11.
    V.V. Krylov: Kristallografia27, 971 (1982) [English transl.: Sov. Phys.-Crystallography27, 475 (1982)]Google Scholar
  12. 12.
    V.V. Krylov: Prog. Surf. Sci.32, 39 (1976)Google Scholar
  13. 13.
    A.I. Murdoch: J. Mech. Phys. Solids24, 137 (1976)Google Scholar
  14. 14.
    G.A. Maugin: InRecent Developments in Surface Acoustic Waves, ed. by D.F. Parker, G.A. Maugin, Springer Ser. Wave Phenom., Vol. 7 (Springer, Berlin, Heidelberg 1988) p. 158Google Scholar
  15. 15.
    H.F. Tiersten: J. Appl. Phys.40, 770 (1969)Google Scholar
  16. 16.
    V.A. Krasil'nikov, V.V. Krylov:Introduction to Physical Acoustics (Nauka, Moscow 1984)Google Scholar
  17. 17.
    V.R. Velasco, F. Garcia-Moliner: Phys. Sci.20, 111 (1979)Google Scholar
  18. 18.
    V.A. Krasil'nikov, V.V. Krylov: Akust. Zh.26, 732 (1980) [English transl.: Sov. Phys.-Acoust.26, 413 (1980)]Google Scholar
  19. 19.
    Yu. A. Kosevich, E.S. Syrkin: Zh. Eksp. Teor. Fiz.89, 2221 (1985) [English transl: Sov. Phys.-JETP62, 1292 (1985)]Google Scholar
  20. 20.
    L.M. Brekhovskikh: Akust. Zh.5, 282 (1959) [English trans.: Sov. Phys.-Acoust.5, 233 (1959–60)]Google Scholar
  21. 21.
    S.V. Biryukov, Yu. V. Gulyaev, V.V. Krylov, V.P. Plessky:Surface Acoustic Waves in Inhomogeneous Media, Springer Ser. Wave Phenom., Vol. 20 (Springer, Berlin, Heidelberg 1995)Google Scholar
  22. 22.
    T.L. Szabo: J. Appl. Phys.46, 1448 (1975)Google Scholar
  23. 23.
    J.M. Richardson: J. Appl. Phys.48, 498 (1977)Google Scholar
  24. 24.
    B.A. Auld:Acoustic Fields and Waves in Solids (Wiley, New York 1973)Google Scholar
  25. 25.
    S.V. Biryukov: Akust. Zh.31, 583 (1985) [English transl.: Sov. Phys.-Acoust.31, 174 (1985)]Google Scholar
  26. 26.
    P. Hess: Ber. Bunsenges. Phys. Chem.97, 1680 (1993)Google Scholar
  27. 27.
    A.A. Kolomenskii, M. Szabadi, P. Hess: Appl. Surf. Sci.86, 591 (1995)Google Scholar
  28. 28.
    H. Wohltjen, A.W. Snow, W.R. Barger, D.S. Ballantine: IEEE Trans. UFFC-34, 172 (1987)Google Scholar
  29. 29.
    B. Holcroft, G.G. Roberts: Thin Solid Films160, 445 (1988)Google Scholar
  30. 30.
    J.W. Grate, R.A. McGill. M.H. Abraham: Proc. IEEE Ultrasonics Symp., Tucson, AZ (1992) p. 275Google Scholar
  31. 31.
    A.J. Ricco, S.J. Martin: Sensors Actuators B10, 123 (1993)Google Scholar
  32. 32.
    J. Reichert, W. Coerdt, H.J. Ache: Sensors Actuators B13, 293 (1993)Google Scholar
  33. 33.
    Z. Wang, C.K. Jen, J.D.N. Cheeke: IEEE Trans. UFFC-41, 397 (1994)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • V. V. Krylov
    • 1
  1. 1.CRBENottingham Trent UniversityNottinghamUK

Personalised recommendations