Monatshefte für Mathematik

, Volume 98, Issue 1, pp 65–74 | Cite as

Localization of spherical harmonic expansions

  • Christopher Meaney
Article

Abstract

We present a localization theorem for expansions in eigenfunctions of the Laplace-Beltrami operator on a compact two-point homogeneous space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Askey, R., Bingham, N. H.: Gaussian processes on compact symmetric spaces. Z. Wahrscheinlichkeitsth.37, 127–143 (1976).Google Scholar
  2. [2]
    Askey, R., Wainger, S.: A dual convolution structure for Jacobi polynomials. In: Orthogonal Expansions and Their Continuous Analogues, pp. 25–36. Carbondale-Edwardsville: Southern Illinois Univ. Press. 1965.Google Scholar
  3. [3]
    Bastis, A. I.: Almost-everywhere convergence of expansions of the Laplace operator on the sphere. Mat. Zametki33, 857–862 (1983).Google Scholar
  4. [4]
    Bonami, A., Clerc, J. L.: Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques. Trans. Amer. Math. Soc.183, 223–263 (1973).Google Scholar
  5. [5]
    Giné, E.: The addition formula for the eigenfunctions of the Laplacian. Adv. Math.18, 102–107 (1975).Google Scholar
  6. [6]
    Helgason, S.: The Radon transform on Euclidean spaces, compact twopoint homogeneous spaces and Grassmanian manifolds. Acta Math.113, 153–180 (1965).Google Scholar
  7. [7]
    Ĥočolava, V. V.: Absence of localization for summation by the method (C, α), 0≤α≤1/2, of the Fourier-Laplace series in the Nikol'skii classH pa(S 2). Soobšč. Akad. Nauk. Gruzin. SSR93, 33–36 (1979).Google Scholar
  8. [8]
    Kahane, J. P., Salem, R.: Ensembles Parfaits et Séries Trigonométriques. Actualités Sci. & Ind. 1301. Paris: Hermann. 1963.Google Scholar
  9. [9]
    Kogbetlianz, E.: Sur le rôle de l'antipode dans la théorie des séries de Laplace et sur les phénomènes analogues. Bull. Sci. Math. (2)49, 13–32 (1925).Google Scholar
  10. [10]
    Mayer, R. A.: Fourier series of differentiable functions onS U(2). Duke Math. J.34, 549–554 (1967).Google Scholar
  11. [11]
    Meaney, C.: Divergent Jacobi polynomial series. Proc. Amer. Math. Soc.87, 459–462 (1983).Google Scholar
  12. [12]
    Pulatov, A. K.: Lack of localization of expansions in Laplace series of functions of the Hölder classC 1/2 on a sphere. Diff. Equations14, 766–769 (1978). Transl. Diff. Uravneniya14, 1076–1080 (1978).Google Scholar
  13. [13]
    Pulatov, A. K.: The absence of localization of the Laplace series on the sphere for a function of the Nikol'skii classH 11 (S 2). Math. Notes22, 779–783 (1977). Transl. Mat. Zametki22, 517–523 (1977).Google Scholar
  14. [14]
    Pulatov, A. K.: On uniform convergence and localization of arithmetic means of Fourier-Laplace series. Soviet Math. Dokl.23, 572–575 Transl. from Dokl. Akad. Nauk SSSR258, 554–556 (1981).Google Scholar
  15. [15]
    Shapiro, V. L.: Localization on spheres. Trans. Amer. Math. Soc.86, 212–219 (1957).Google Scholar
  16. [16]
    Sjölin, P.: Regularity and integrability of spherical means. Mh. Math.96, 277–291 (1983).Google Scholar
  17. [17]
    Szegö, G.: Orthogonal Polynomials, 3rd ed. AMS Colloquium Publ.23 (1967).Google Scholar
  18. [18]
    Wang, H. C.: Two-point homogeneous spaces. Annals Math.55, 117–191 (1952).Google Scholar
  19. [19]
    Zygmund, A.: Remarques sur les ensembles d'unicité dans quelques systèmes orthogonaux. Atti del Congr. Internat. Math. Tomo II, pp. 309–311, Bologna 1928.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Christopher Meaney
    • 1
    • 2
  1. 1.Departimento di MatematicaUniversità di MilanoMilanoItaly
  2. 2.Department of MathematicsUniversity of TexasAustinUSA

Personalised recommendations