Human Ecology

, Volume 1, Issue 4, pp 347–356 | Cite as

Primary production: Freshwater ecosystems

  • Gene E. Likens
Article

Abstract

Freshwater bodies include a small fraction of the earth's surface (0.5%) and the biosphere's production. Freshwater productivity is difficult to estimate because of both problems of measurement and the great diversity of water bodies. A total production of 1.3×109 tons/year is suggested. Freshwater bodies are now subject to widespread unnatural fertilization or cultural eutrophication. While this process increases their productivity, in many cases it shifts that productivity into forms less suitable for use as human food.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleem, A. A., and Samaan, A. A. (1969). Productivity of Lake Mariut, Egypt. Part II. Primary production.Internat. Rev. Gesammt. Hydrobiol. 54(4):491–527.Google Scholar
  2. Allen, H. (1971). Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake.Ecol. Monogr. 41:97–121.Google Scholar
  3. Beeton, A. M. (1969). Changes in the environment and biota of the Great Lakes. InEutrophication: Causes, Consequences and Correctives, National Academy of Sciences, Washington, D.C., pp. 150–197.Google Scholar
  4. Culver, D. A., and Brunskill, G. J. (1969). Fayetteville Green Lake. V. Studies of primary production and zooplankton in a meromictic marl lake.Limnol. Oceanog. 14 (6):862–973.Google Scholar
  5. Davis, C. C. (1966). Plankton Studies in the Largest Great Lakes of the World, University of Michigan, Great Lakes Research Division Publications, No. 14, pp. 1–36.Google Scholar
  6. Edmondson, W. T. (1969). Eutrophication in North America. InEutrophication: Causes, Consequences and Correctives, National Academy of Sciences, Washington, D.C., pp. 124–149.Google Scholar
  7. Edmondson, W. T. (1972). Nutrients and phytoplankton in Lake Washington. In Likens, G. E. (ed.),Nutrients and Eutrophication, American Society of Limnology and Oceanography, Special Symposia Vol. 1, Lawrence, Kansas, pp. 172–193.Google Scholar
  8. Findenegg, I. (1966). Phytoplankton and primärproduktion einiger ostschweizerischer Seen und des Bodensees.Schweiz. Z. Hydrol. 28:148–171.Google Scholar
  9. Fisher, S. G., and Likens, G. E. (1972). Stream ecosystem: Organic energy budget.BioScience 22(1):33–35.Google Scholar
  10. Fogg, G. E. (1969). Oxygen-versus14C-methodology. In Vollenweider, R. A. (ed.),A Manual on Methods for Measuring Primary Production in Aquatic Environments, IBP Handbook No. 12, F. A. Davis Co., Philadelphia, pp. 76–78.Google Scholar
  11. Goldman, C. R. (ed.). (1966).Primary Productivity in Aquatic Environments, Memorias del Instituto Italiano Idrobiologia 18 (Suppl.), University of California Press, Berkeley.Google Scholar
  12. Goldman, C. R. (1968). Aquatic primary production.Am. Zoologist 8:31–42.Google Scholar
  13. Hasler, A. D., and Ingersoll, B. (1968). Dwindling lakes.Nat. Hist. 77(9):1–6.Google Scholar
  14. Hobbie, J. E. (1964). Carbon 14 measurements of primary production in two arctic Alaskan lakes.Internat. Verein. Theoret. Angew. Limnol. 15:360–364.Google Scholar
  15. Hogetsu, K., and Ichimura, S. (1954). Studies on the biological production of Lake Suwa. VI. The ecological studies on the production of phytoplankton.Jap. J. Bot. 14:280–303.Google Scholar
  16. Hutchinson, G. E. (1957).A Treatise on Limnology, Vol. 1:Geography, Physics and Chemistry, Wiley, New York.Google Scholar
  17. Hutchinson, G. E. (1970). The Biosphere.Sci Am. 223(3):45–53.Google Scholar
  18. Hynes, H. B. N. (1963). Imported organic matter and secondary productivity in streams.Proc. 16th Internat. Congr. Zool. 4:324–329.Google Scholar
  19. Jónasson, P. M., and Kristiansen, J. (1967). Primary and secondary production in Lake Esrom. Growth ofchironomus anthracinus in relation to seasonal cycles of phytoplankton and dissolved oxygen.Internat. Rev. Gesammt. Hydrobiol. 52:163–217.Google Scholar
  20. Ketelle, M. J., and Uttormark, P. D. (1971). Problem Lakes in the United States, Technical Report 16010 EHR 12/71, Water Resources Center, University of Wisconsin, Madison.Google Scholar
  21. Likens, G. E. (1972). Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.),Nutrients and Eutrophication, American Society of Limnology and Oceanography, Special Symposia Vol. 1, Lawrence, Kansas, pp. 3–14.Google Scholar
  22. Lund, J. W. G., Mackereth, F. J. H., and Mortimer, C. H. (1963). Changes in depth and time of certain chemical and physical conditions and of the standing crop ofAsterionella formosa Hass. in the North Basin of Windermere in 1947.Phil. Trans. Roy. Soc. (Lond.) 246B:255–290.Google Scholar
  23. Mathiesen, H. (1963). Om planteplanktonets produktion af organisk stof nogle naeringsrige søer på Sjaelland.-Ferskvandsfiskeribladet 1963 (1,2), 8 pp.Google Scholar
  24. Melack, J. M., and Kilham, P. (1971). Primary production by phytoplankton in East African alkaline lakes.Bull. Ecol. Soc. Am. 52(4):45.Google Scholar
  25. Odum, H. T. (1956). Primary production in flowing waters.Limnol. Oceanog. 1(2): 102–117.Google Scholar
  26. Oglesby, R. T. (1969). Effects of controlled nutrient dilution on the eutrophication of a lake. InEutrophication: Causes, Consequences and Correctives, National Academy of Sciences, Washington, D.C., pp. 483–493.Google Scholar
  27. Penman, H. L. (1970). The water cycle.Sci. Am. 223(3):99–108.Google Scholar
  28. Peterka, J. J., and Reid, L. A. (1968). Primary production and chemical and physical characteristics of Lake Ashtabula Reservoir, North Dakota.Proc. N. Dakota Acad. Sci. 22:138–156.Google Scholar
  29. Rich, P. H., Wetzel, R. G., and VanThuy, N. (1971). Distribution, production and role of aquatic macrophytes in a southern Michigan marl lake.Freshwater Biol. 1:3–21.Google Scholar
  30. Rodhe, W. (1958). The primary production in lakes: Some results and restrictions of the14 C methods.Rapport et Procés Verbaux de Reunion des Counseil Internat. Exploration de Mer 144:122–128.Google Scholar
  31. Rodhe, W. (1969). Crystallization of eutrophication concepts in northern Europe. InEutrophication: Causes, Consequences and Correctives, National Academy of Sciences, Washington, D.C., pp. 50–64.Google Scholar
  32. Russell-Hunter, W. D. (1970).Aquatic Productivity, Macmillan, New York.Google Scholar
  33. Sorokin, Y. I. (1966). On the trophic role of chemosynthesis and bacterial biosynthesis in water bodies. In Goldman, C. R. (ed.),Primary Productivity in Aquatic Environments, Memorias dele Instituto Italiano Idrobiologia, 18 (Suppl.), University of California Press, Berkeley, pp. 187–205.Google Scholar
  34. Walker, K. F. (1973). Studies on a saline lake ecosystem.Aust. J. Mar. Freshwat. Res. 24:21–71.Google Scholar
  35. Westlake, D. F. (1963). Comparisons of plant productivity.Biol. Rev. 38:385–425.Google Scholar
  36. Westlake, D. F. (1966). Some basic data for investigations of the productivity of aquatic macrophytes. In Goldman, C. R. (ed.),Primary Productivity in Aquatic Environments, Memorias dele Instituto Italiano Idrobiologia, 18 (Suppl.), University of California Press, Berkeley, pp. 229–249.Google Scholar
  37. Westlake, D. F. (1969). Units and comparability. In Vollenweider, R. A. (ed.),A Manual on Methods for Measuring Primary Production in Aquatic Environments, IBP Handbook No. 12, F. A. Davis Co., Philadelphia, pp. 113–117.Google Scholar
  38. Whittaker, R. H. (1970).Communities and Ecosystems, Macmillan, New York.Google Scholar
  39. Vollenweider, R. A. (ed.) (1969).A Manual on Methods for Measuring Primary Production in Aquatic Environments, IBP Handbook No. 12, F. A. Davis Co., Philadelphia.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • Gene E. Likens
    • 1
  1. 1.Section of Ecology and Systematics, Division of Biological SciencesCornell UniversityIthaca

Personalised recommendations