Human Ecology

, Volume 1, Issue 4, pp 303–332 | Cite as

Primary production: Terrestrial ecosystems

  • Helmut Lieth


The history of growth in understanding of primary productivity and in making estimates of biosphere production is reviewed. Two approaches to estimation of land production are discussed. Production may first be estimated by mean values for ecosystem types and the areas of these. A total production of 100×109 tons/year is thus estimated for the continents, making up 29% of the earth's surface. The energy content of net primary production is 426×1018 cal for the continents and 261×1018 cal for the seas, implying a biosphere energy efficiency of 0.13% relative to incident sunlight of the full spectrum at the earth's surface. As a second approach, the relation of productivity to mean annual temperature and precipitation is analyzed. On the basis of these relationships, a “Miami model” map of primary productivity of the continents is presented.


Environmental Management Terrestrial Ecosystem Energy Content Energy Efficiency Total Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Art, H. W., and Marks, P. L. (1971). A summary table of biomass and net annual primary production in forest ecosystems of the world. InForest Biomass Studies, International Union of Forest Research Organizations Conference, Section 25, Gainesville, Fla.; Life Science and Agriculture Experiment Station, University of Maine, Orono, pp. 3–34.Google Scholar
  2. Art, H. W., Marks, P. L., and Scott, J. T. (1971). Productivity profile of New York. Eastern Deciduous Forest Biome US-IBP Memo Report No. 71-12, unpaginated.Google Scholar
  3. Aruga, Y., and Monsi, M. (1963). Chlorophyll amount as an indicator of matter productivity in bio-communities.Plant Cell Physiol. 4:29–39.Google Scholar
  4. Bandhu, D. (1971). A study of the productive structure of tropical dry deciduous forest at Varanasi. Thesis, Benares Hindu University, Varanasi, 111 pp.Google Scholar
  5. Bazilevich, N. I., and Rodin, L. E. (1971) Geographical regularities in productivity and the circulation of chemical elements in the earth's main vegetation types.Soviet Geog. Rev. Transl. 12(1):24–53.Google Scholar
  6. Bazilevich, N. I., Drozdov, A. V., and Rodin, L. E. (1968). Productivity of the plant cover of the earth, general regularities of its distribution and relation to climatic factors (In Russian with English summary).Zh. Obshch. Biol. 29(3):267–271.Google Scholar
  7. Basilevich, N. I., Rodin, L. E., and Rozov, N. N. (1970). Untersuchungen der biologischen Produktivität in geographischer Sicht (In Russian), 5.Tagung Geog. Gessell. USSR (Leningrad).Google Scholar
  8. Bowen, H. J. M. (1966).Trace Elements in Biochemistry, Academic Press, London and New York.Google Scholar
  9. Bray, J. R. (1960). The chlorophyll content of some native and managed plant communities in central Minnesota.Can. J. Bot. 38:313–333.Google Scholar
  10. Bray, J. R. (1962). The primary productivity of vegetation in central Minnesota/USA and its relationship to chlorophyll content and albedo (German summary). In Lieth, H. (ed.),Die Stoffproduktion der Pflanzendecke, Fischer, Stuttgart, pp. 102–109.Google Scholar
  11. Bray, J. R., and Gorham, E. (1964). Litter production in forests of the world.Advan. Ecol. Res. 2:101–157.Google Scholar
  12. Brockmann-Jerosch, H. (1930). Formations Klassen der Erde, Map. In Rübel, E.,Pflanzengesellschaften der Erde, Huber, Bern-Berlin.Google Scholar
  13. Cummins, K. W., and Wuycheck, J. C. (1971). Caloric equivalents for investigations in ecological energetics.Mitt. Internat. Verein. Limnol. 18:1–158.Google Scholar
  14. Cusanus, N. (Nicolai de Cusa) (1450).De staticis experimentatis.Google Scholar
  15. Dennis, J. G., and Tieszen, L. L. (1971). Primary production and nutrient dynamics of tundra vegetation at Barrow, Alaska. In Bowen, S. (ed.), Preliminary Report of Project 3111, 1971 Progress Report, Tundra Biome US-IBP, Vol. 1, pp. 35–37.Google Scholar
  16. DeSelm, H. R. (1971). Tennessee productivity profiles. Eastern Deciduous Forest Biome US-IBP Memo Report No. 71-13.Google Scholar
  17. Drozdov, A. V. (1971). The productivity of zonal terrestrial plant communities and the moisture and heat parameters of an area.Soviet Geog. Rev. Transl. 12:54–60.Google Scholar
  18. Duvigneaud, P. (ed.) (1967).L'Ecologie, Science Moderne de Synthèse, Vol. 2:Écosystèmes et Biosphère, Minist. de l'Education National et Culture, Bruxelles.Google Scholar
  19. Ebermayer, E. W. F. (1882).Naturgesetzliche Grundlagen des Wald- und Ackerbaues. Pt. I:Physiologische Chemie der Pflanzen, Vol. 1:Die Bestandtheile der Pflanzen, Springer, Berlin.Google Scholar
  20. Ellenberg, H., and Mueller-Dombois, D. (1967). Tentative physiognomic-ecological classification of plant formations of the earth.Ber. Geobot. Inst. Eidg. Techn. Hochschule Stiftung Rübel, Zürich, 1965–69 37:21–55.Google Scholar
  21. Ewel, J. J. (1971a). Biomass changes in early tropical forest succession.Turriabla 21(1):110–112.Google Scholar
  22. Ewel, J. J. (1971b). Experiments in arresting succession with cutting and herbicides in five tropical environments. Ph.D. thesis, University of North Carolina, Chapel Hill, 248 pp.Google Scholar
  23. Filzer, P. (1951).Die natürlichen Grundlagen des Pflanzenertrages in Mitteleuropa, Schweizerbart, Stuttgart.Google Scholar
  24. Fleming, R. H. (1957). General features of the oceans. In Hedgepeth, J. W. (ed.),Treatise on Marine Ecology and Paleoecology, Vol. 2:Ecology, Geological Society of America, Memoirs 67(1), New York, pp. 87–108.Google Scholar
  25. Fogg, G. E. (1958). Actual and potential yields in photosynthesis.Advan. Sci. 14:359–400.Google Scholar
  26. Gabrielsen, E. K. (1960). Chlorophyllkonzentration und Photosynthese.Handbuch der Pflanzenphysiologie, Vol. 2, Springer, Heidelberg, pp. 156–167.Google Scholar
  27. Gessner, F. (1959).Hydrobotanik, Vol. 2, Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
  28. Geyger, E. (1964). Methodische Untersuchungen zur Erfassung der assimilierenden Gesamtoberflächen von Wiesen.Ber. Geobot. Inst. Eidg. Techn. Hochschule, Stiftung Rübel, Zürich, 1963 35:41–112.Google Scholar
  29. Golley, F. B. (1972). Energy flux in ecosystems. In Wiens, J. A. (ed.),Ecosystem Structure and Function, Oregon State University, Corvallis.Google Scholar
  30. Jordan, C. F. (1971a). Productivity of a tropical forest and its relation to a world pattern of energy storage.J. Ecol. 59:127–143.Google Scholar
  31. Jordan, C. F. (1971b). A world pattern of plant energetics.Sci. Am. 59:425–433.Google Scholar
  32. Junge, C. E., and Czeplak, G. (1968). Some aspects of the seasonal variation of carbon dioxide and ozone.Tellus 20:422–434.Google Scholar
  33. Kira, T., and Ogawa, H. (1971). Assessment of primary production in tropical and equatorial forests (French summary). In Duvigneaud, P. (ed.),Productivity of Forest Ecosystems: Proceedings of the Brussels Symposium 1969, Ecology and Conservation 4, UNESCO, Paris, pp. 309–321.Google Scholar
  34. Kreh, R. (1965). Untersuchungen über den Aufbau und die Stoffproduktion eines Sonnenblumenbestandes. Doctoral thesis, Landwirtschftliche Hochschule Stuttgart Hohenheim, 71 pp. with table volume.Google Scholar
  35. Lieth, H. (1956). Ein Beitrag zur Frage der Korrelation zwischen mittleren Klimawerten und Vegetationsformationen.Ber. Deutsch. Bot. Gesell. 69:169–176.Google Scholar
  36. Lieth, H. (1961). La produccion de sustancia organica por la capa vegetal terrestre y sus problemas.Acta Cien. Venezolana 12:107–114.Google Scholar
  37. Lieth, H. (1962).Die Stoffproduktion der Pflanzendecke, Fischer, Stuttgart.Google Scholar
  38. Lieth, H. (1963). The role of vegetation in the carbon dioxide content of the atmosphere.J. Geophys. Res. 68(13):3887–3898.Google Scholar
  39. Lieth, H. (1964). Versuch einer kartographischen Darstellung der Produktivität der Pflanzendecke auf der Erde. InGeographisches Taschenbuch 1964/65, Steiner, Wiesbaden, pp. 72–80.Google Scholar
  40. Lieth, H. (1965a). Oekologische Fragestellungen bei der Untersuchung der biologischen Stoffproduktion.Qualitas Plantarum et Materiae Vegetabiles 12:241–261.Google Scholar
  41. Lieth, H. (1965b). Indirect methods of measurement of dry matter production (French summary). InMethodology of Plant Eco-physiology: Proceedings of the Montpellier Symposium 1962, UNESCO, Paris, pp. 513–518.Google Scholar
  42. Lieth, H. (1968). The determination of plant dry matter production with special emphasis on the underground parts (French summary). In Eckardt, F. E. (ed.),Functioning of Terrestrial Ecosystmes at the Primary Production Level: Proceedings of the Copenhagen Symposium 1965, Natural Resources Research 5, UNESCO, Paris, pp. 179–186.Google Scholar
  43. Lieth, H. (1971). Mathematical modeling for ecosystems analysis (French summary). In Duvigneaud, P. (ed.),Productivity of Forest Ecosystems: Proceedings of the Brussels Symposium 1969, Ecology and Conservation 4, UNESCO, Paris, pp. 567–575.Google Scholar
  44. Lieth, H. (1972). Über die Primärproduktion der Pflanzendecke der Erde.Z. Angew. Bot. 46:1–37.Google Scholar
  45. Lieth, H. (in press). Primary productivity of successional stages. In Tüxen, R. (ed.),Handbuch der Vegetationskunde. Junk, The Hague.Google Scholar
  46. Lieth, H., and Pflanz, B. (1968). The measurement of calorific values of biological material and the determination of ecological efficiency (French summary). In Eckardt, F. E. (ed.),Functioning of Terrestrial Ecosystems at the Primary Production Level: Proceedings of the Copenhagen Symposium 1965, Natural Resources Research 5, UNESCO, Paris, pp. 233–242.Google Scholar
  47. Lieth, H., and Zauner, F. (1957). Vegetationsformationen und mittlere Klimadaten.Flora 144:290–296.Google Scholar
  48. Lieth, H., Osswald, D., and Martens, H. (1965). Stoffproduktion, Spross/Wurzel-Verhältnis, Chlorophyllgehalt and Blattfläche von Jungpappeln,Mitt. Vereins Forstliche Standortskunde und Forstpflanzenzüchtung 1965:70–74.Google Scholar
  49. Lossaint, P., and Rapp, M. (1971). Répartition de la matière organique, productivité des èlèments minèraux dans des écosystèmes de climat méditerráneen (English summary). In Duvigneaud, P. (ed.),Productivity of Forest Ecosystems: Proceedings of the Brussels Symposium 1969, Ecology and Conservation 4, UNESCO, Paris, pp. 597–617.Google Scholar
  50. Martens, H. J. (1964). Untersuchungen über den Blattflächenindex und die Methoden zu seiner Messung. Thesis, Stuttgart University, 51 pp.Google Scholar
  51. Medina, E. (1970). Estudios eco-fisiologicos de la vegetation tropical.Bol. Soc. Venezolana den. Nat. 29(2):63–88.Google Scholar
  52. Medina, E., and Lieth, H. (1963). Contenido de clorofila de algunas asociaciones vegetales de Europa Central y su relacion con la productividad.Qualitas Plantarum et Materiae Vegetabiles 9:219–229.Google Scholar
  53. Medina, E., and Lieth, H. (1964). Die Beziehungen zwischen Chlorophyllgehalt, assimilierender Flache und Trockensubstanzproduktion in einigen Pflanzengemeinschaften.Beitr. Biol Pflanzen 40:451–494.Google Scholar
  54. Medina, E., and San Jose, J. J. (1970). Analisis de la productividad de cana de azucar. II.Turrialba 20:149–152.Google Scholar
  55. Mitscherlich, E. A. (1954).Bodenkunde für Landwirte, Forstwirte und Gärtner, 7th ed., Parey, Berlin and Hamburg.Google Scholar
  56. Müller, D. (1960). Kreislauf des Kohlenstoffs.Handbuch der Pflanzenphysiologie, Vol. 12/2, Springer, Heidelberg, pp. 934–948.Google Scholar
  57. Nemeth, J. (1971). Doctoral thesis, North Carolina State University, Raleigh.Google Scholar
  58. Noddack, W. (1937). Der Kohlenstoff im Haushalt der Natur.Angew. Chem. 50:271–277.Google Scholar
  59. Noddack, W., and Komor, J. (1937). Uber die Ausnutzung des Sonnenlichtes beim Wachstum der grünen Pflanzen unter natürlichen Bedingungen.Angew. Chem. 50:271–277.Google Scholar
  60. Odum, E. P. (1971).Fundamentals of Ecology, 3rd ed., Saunders, Philadelphia.Google Scholar
  61. Odum, H. T., McConnell, W., and Abbot, W. (1959). The chlorophyll “A” of communities.Publ. Inst. Mar. Sci. Univ. Texas 5:65–96.Google Scholar
  62. Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems.Ecology 44:322–331.Google Scholar
  63. Olson, J. S. (1970). Geographic index of world ecosystems. In Reichle, D. (ed.),Analysis of Temperate Forest Ecosystems, Springer, New York, pp. 297–304.Google Scholar
  64. Pflanz, B. (1964). Der Energiegehalt und die ökologische Energieausbeute verschiedener Pflanzen und Pflanzenbestäunde. Thesis, Stuttgart University, 42 pp.Google Scholar
  65. Rabinovitch, E. (1971). An unfolding discovery.Proc. Nat. Acad. Sci. 68:2875–2876.Google Scholar
  66. Reader, R. (1971). Net primary productivity and peat accumulation in Southeastern Manitoba. Master's thesis, University of Manitoba, 220 pp.Google Scholar
  67. Reichle, D. (ed.) (1970).Analysis of Temperate Forest Ecosystems, Springer, New York.Google Scholar
  68. Riley, G. A. (1944). The carbon metabolism and photosynthetic efficiency of the earth as a whole.Sci Am. 32:129–134.Google Scholar
  69. Rodin, L. E., and Bazilevich, N. I. (1966).Production and Mineral Cycling in Terrestrial Vegetation, Oliver and Boyd, Edinburgh.Google Scholar
  70. Ryther, J. H. (1959). Potential productivity of the sea.Science 130:602–608.Google Scholar
  71. Ryther, J. H. (1963). Geographic variations in productivity. In Hill, M. N. (ed.),The Sea, Vol. 2, Interscience, London, pp. 347–380.Google Scholar
  72. Schroeder, H. (1919). Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde.Naturwissenschaften 7:8–12.Google Scholar
  73. Schultz, G. (1962). Blattfläche und Assimilationsleistung in Beziehung zur Stoffproduktion. Untersuchungen an Zuckerrüben.Ber. Deutsch. Bot. Gesell. 75:261–267.Google Scholar
  74. Stearns, F., Kobriger, N., Cottam, G., and Howell, E. (1971). Productivity profile of Wisconsin. Eastern Deciduous Forest Biome US-IBP Memo Report No. 71-14.Google Scholar
  75. Steemann Nielsen, E. (1954). On organic production in the oceans.J. Conseil Permanante Internat. Exploration de Mer (Paris) 19:309–328.Google Scholar
  76. Steemann Nielsen, E., and Aabye Jensen, E. (1957). Primary oceanic production. The autotrophic production of organic matter in the oceans.Galathea Rep. 1:49–136.Google Scholar
  77. Sverdrup, H. U. (1955). The place of physical oceanography in oceanographic research.J. Mar. Res. 14:287–294.Google Scholar
  78. SYMAP. Reference Manual for Synagraphic Computer Mapping. Harvard Graduate School of Design, Harvard University, Cambridge, Mass.Google Scholar
  79. Trewartha, G. T. (1954).An Introduction to Climate, 3rd ed., McGraw-Hill, New York.Google Scholar
  80. Vareschi, V. (1953). Sobre las superficies de asimilacion de sociedades vegetales de cordilleras tropicales y extratropicales.Bol. Soc. Venezolana Cien. Nat. 14:121–173.Google Scholar
  81. von Liebig, J. (1840).Organic Chemistry and Its Applications to Agriculture and Physiology, English ed., L. Playfair and W. Gregory, Taylor & Walton, London.Google Scholar
  82. von Liebig, J. (1862).Die Naturgesetze des Feldbaues, Vieweg, Braunschweig.Google Scholar
  83. Walter, H. (1939). Grasland, Savanne und Busch der ariden Teile Afrikas in ihrer ökologschen Bedingtheit.Jahrbücher Wissenschaft. Bot. 87:750–860.Google Scholar
  84. Walter, H. (1964).Die Vegetation der Erde in ökologischer Betrachtung, Vol. 1:Die tropischen und subtropischen Zonen, Fischer, Jena.Google Scholar
  85. Walter, H. (1968).Die Vegetation der Erde in ökologischer Betrachtung, Vol. 2:Die gemässigten und arktischen Zonen, Fisher, Jena.Google Scholar
  86. Walter, H., and Lieth, H. (1960–1967).Klimadiagramm-Weltatlas, Fischer, Jena.Google Scholar
  87. Wells, C., and Lieth, H. (1970). Preliminary assessment of the productivity of aPinus taeda plantation in the Piedmont of North Carolina. Report to the Deciduous Forest Biome Headquarters, 4 pp.Google Scholar
  88. Whigham, D., Lieth, H., Noggle, R., and Gross, D. (1971). Productivity profile of North Carolina; preliminary results. Eastern Deciduous Forest Biome US-IBP Memo Report No. 71-9.Google Scholar
  89. Whittaker, R. H. (1962). Classification of natural communities.Bot Rev. 28:1–239.Google Scholar
  90. Whittaker, R. H. (1966). Forest dimensions and production in the Great Smoky Mountains.Ecology 47:103–121.Google Scholar
  91. Whittaker, R. H. (1970).Communities and Ecosystems, Macmillan, New York.Google Scholar
  92. Whittaker, R. H., and Woodwell, G. M. (1971). Measurement of net primary production of forests (French summary). In Duvigneaud, P. (ed.),Productivity of Forest Ecosystems: Proceedings of the Brussels Symposium 1969, Ecology and Conservation 4, UNESCO, Paris, pp. 159–175.Google Scholar
  93. Young, H. E. (ed.) (1968).Symposium on Primary Productivity and Mineral Cycling in Natural Ecosystems, University of Maine Press, Orono.Google Scholar
  94. Young, H. E. (ed.) (1971). Biomass sampling methods for puckerbursh stands. InForest Biomass Studies, International Union of Forest Reseach Organizations Conference, Section 25, Gainesville, Fla.; Life Sciences and Agriculture Experiment Station, University of Maine, Orono.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • Helmut Lieth
    • 1
  1. 1.Department of BotanyUniversity of North CarolinaChapel Hill

Personalised recommendations