Advertisement

Mathematische Annalen

, Volume 251, Issue 2, pp 185–190 | Cite as

Group representations which vanish at infinity

  • Keith F. Taylor
Article

Keywords

Group Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsac, G.: Sur un espace fonctionnel associé à une représentation unitaire d'un groupe localement compact. C. R. Acad. Sci. Paris273, 298–300 (1971)Google Scholar
  2. 2.
    Baggett, L., Taylor, K.: Riemann-Lebesgue subsets of ℝn and representations which vanish at infinity. J. Functional Analysis28, 168–181 (1978)Google Scholar
  3. 3.
    Baggett, L., Taylor, K.: A sufficient condition for the complete reducibility of the regular representation. To appear in J. Functional AnalysisGoogle Scholar
  4. 4.
    Baggett, L., Taylor, K.: Groups with completely reducible regular representations. Proc. Amer. Math. Soc.72, 593–600 (1978)Google Scholar
  5. 5.
    Baggett, L., Taylor, K.: Asymptotic behaviour of induced representations. To appearGoogle Scholar
  6. 6.
    Dixmier, J.: LesC*-algèbres et leurs représentations, 2e ed. Paris: Gauthier-Villars 1969Google Scholar
  7. 7.
    Figà-Talamanca, A.: Positive definite functions which vanish at infinity. Pacific J. Math.69, 355–363 (1977)Google Scholar
  8. 8.
    Howe, R., Moore, C.: Asymtotic properties of unitary representations. To appear in J. Functional AnalysisGoogle Scholar
  9. 9.
    Iwasawa, K.: Topological groups with invariant compact neighbourhoods of the identity. Ann. of Math.54, 345–348 (1951)Google Scholar
  10. 10.
    Kaniuth, E.: Die Struktur der regulären Darstellung lokalkompakter Gruppen mit invarianter Umgebungsbasis der Eins. Math. Ann.194, 225–248 (1971)Google Scholar
  11. 11.
    Moore, C.: Groups with finite dimensional irreducible representations. Trans. Am. Math. Soc.166, 401–410 (1972)Google Scholar
  12. 12.
    Robertson, L.: A note on the structure of Moore groups. Bull. Am. Math. Soc.75, 594–598 (1969)Google Scholar
  13. 13.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  14. 14.
    Smith, M.: Group algebras. J. Algebra18, 477–499 (1971)Google Scholar
  15. 15.
    Smith, M.: Regular representation of discrete groups. J. Functional Analysis11, 401–406 (1972)Google Scholar
  16. 16.
    Smith, M.: Regular representations of unimodular groups. Math. Ann.203, 183–185 (1973)Google Scholar
  17. 17.
    Taylor, K.: The type structure of the regular representation of a locally compact group. Math. Ann.222, 211–224 (1976)Google Scholar
  18. 18.
    Wilcox, T.W.: A note on groups with relatively compact conjugacy classes. Proc. Am. Math. Soc.42, 326–329 (1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Keith F. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations