, Volume 30, Issue 1, pp 201–232

Tests of non-allelic interaction and linkage for quantitative characters in generations derived from two diploid pure lines

  • J. H. van der Veen


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cavalli, L. L. 1952. An analysis of linkage in quantitative inheritance.Quantitative Inheritance (Ed.E. C. Reeve andC. H. Waddington): 135–144. H.M.S.O. (London).Google Scholar
  2. Cochran, W. G. 1951. Testing a linear relation among variances.Biometrics, 7: 17–32.PubMedGoogle Scholar
  3. Dempster, E. R. 1956. Some genetic problems in controlled populations.Proc. 3 rd Berkeley Symp. Math. Stat. and Probl.,IV, (Ed.J. Neyman): 23–40.Google Scholar
  4. Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance.Trans. Roy. Soc. Edinb., 52: 399–433.Google Scholar
  5. Fisher, R. A., Immer, F. R., andTedin, O. 1932. The genetical interpretation of statistics of the third degree in the study of quantitative inheritance.Genetics, 17: 107–124.Google Scholar
  6. Hayman, B. I. 1954 (a). A mathematical theory of gene action and interaction. Ph. D. Thesis, Univ. of Birmingham Library.Google Scholar
  7. Hayman, B. I. 1954 (b). The theory and analysis of diallel crosses.Genetics, 39: 789–809.Google Scholar
  8. Hayman, B. I. 1955. The description and analysis of gene action and interaction.Cold Spring Harbor Symp. Quant. Biol., 20: 79–86.PubMedGoogle Scholar
  9. Hayman, B. I. 1958. The separation of epistatic from additive and dominance variation in generation means.Heredity, 12: 371–390.Google Scholar
  10. Hayman, B. I. andMather, K. 1955. The description of genic interactions in continuous variation.Biometrics, II: 69–82.Google Scholar
  11. Jinks, J. L. 1956. TheF 2 and backcross generations from a set of diallel crosses.Heredity, 10: 1–30.Google Scholar
  12. Jinks, J. L. andJones, R. Morley 1958. Estimations of the components of heterosis.Genetics, 43: 223–234.Google Scholar
  13. Jones, R. Morley andMather, K. 1958. Interaction of genotype and environment in continuous variation: II. Analysis.Biometrics, 14: 489–498.Google Scholar
  14. Kempthorne, O. 1957. An Introduction to Genetic Statistics. John Wiley & Sons (New York), pp. XVii+545.Google Scholar
  15. Mather, K. 1949 (a). Biometrical Genetics. Methuen (London), pp. iX+162.Google Scholar
  16. Mather, K. 1949 (b). The genetical theory of continuous variation. Proc. 8th Int. Congr. Genetics.Hereditas (Suppl. Vol.1949): 376–401.Google Scholar
  17. Mather, K. andJones, R. Morley 1958. Interaction of genotype and environment in continuous variation: I. Description.Biometrics, 14: 343–359.Google Scholar
  18. Mather, K. andVines, A. 1952. The inheritance of height and flowering time in a cross of Nicotiana rustica.Quantitative Inheritance (Ed.E. C. Reeve andC. H. Waddington): 49–79. H.M.S.O. (London).Google Scholar
  19. Nelder, J. A. 1952. Some genotypics frequencies and variance components occurring in biometrical genetics.Heredity, 6: 387–394.Google Scholar
  20. Nelder, J. A. 1953. Statistical models in biometrical genetics.Heredity, 7: 111–119.Google Scholar
  21. Nelder, J. A. 1959. The estimation of variance components in certain types of experiments in quantitative genetics.Proc. Intern. Symp. Biometrical Genetics (Ottawa, 1958). Pergamon Press (In the press).Google Scholar
  22. Opsahl, B. 1956. The discrimination of interactions and linkage in continuous variation.Biometrics, 12: 415–432.Google Scholar
  23. Robson, D. S. 1957. Application of multivariate polykays to the estimation of genetic variance components. Paper No. 351 Dpt. Plant Breeding, Cornell Univ., pp. 17.Google Scholar
  24. Siegel, S. 1956. Non-parametric Statistics for the Behavioral Sciences. McGraw-Hill (New-York). pp. XVii+312.Google Scholar
  25. Smith, H. H. andRobson, D. S. 1959. Inheritance of dimensions of flower parts in tobacco.Proc. Intern. Symp. Biometrical Genetics (Ottawa, 1958). Pergamon Press (In the press).Google Scholar
  26. Van der Veen, J. H.1957. The heritable variance ofF 1×F 2 progeny means.Biometrics, 13: 111–112.Google Scholar
  27. Welch, B. L. 1947. The generalisation of “Student's” problem when several different population variances are involved.Biometrika, 34: 28–35.Google Scholar

Copyright information

© Martinus Nijhoff 1959

Authors and Affiliations

  • J. H. van der Veen
    • 1
    • 2
  1. 1.Laboratory of GeneticsAgricultural UniversityWageningenThe Netherlands
  2. 2.A.R.C. Unit of Biometrical Genetics, Department of GeneticsUniversity of BirminghamEngland

Personalised recommendations