Journal of Engineering Mathematics

, Volume 5, Issue 1, pp 1–9 | Cite as

Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the laplace transform

  • R. Piessens


An approximate formula for the inversion of the Laplace transformF(p) is studied. The formula is exact wheneverF(p) is a linear combination ofp−s+k,k=0, 1, 2, ..., 2N−1, withs an arbitrary positive real number. The formula is derived from a gaussian integration formula for Bromwich's inversion integral.

A numerical example is given as illustration of the use of the approximate inversion formula.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. E. Bellman, R. E. Kalaba and J. Lockett,Numerical Inversion of the Laplace Transform, American Elsevier Publishing Company, New York (1966).Google Scholar
  2. [2]
    C. Lanczos,Applied Analysis, Prentice Hall, Englewood Cliffs, N.J. (1956).Google Scholar
  3. [3]
    A. Papoulis, A New Method of Inversion of the Laplace Transform.Quart. Appl. Math., 14 (1956) 405–414.Google Scholar
  4. [4]
    W. T. Weeks, Numerical Inversion of Laplace Transforms using Laguerre Functions,Journal of the A.C.M. 13 (1966) 419–426.Google Scholar
  5. [5]
    H. Dubner and J. Abate, Numerical Inversion of Laplace Transforms and the Finite Cosine Transform,Journal of the A.C.M. 15 (1968) 115–123.Google Scholar
  6. [6]
    H. E. Salzer, Orthogonal Polynomials arising in the Numerical Evaluation of Inverse Laplace Transforms,M.T.A.C. 9, (1955) 164–177.Google Scholar
  7. [7]
    H. E. Salzer, Additional Formulas and Tables for Orthogonal Polynomials originating from Inversion Integrals,J. Math. Phys., 40 (1961) 72–86.Google Scholar
  8. [8]
    V. I. Krylov and N. S. Skoblya, On the numerical Inversion of the Laplace Transform,Inzh.-Fiz. Zh. 4 (1961) 85–101 (Russian).Google Scholar
  9. [9]
    N. S. Skoblya, Tables for the Numerical Inversion of the Laplace Transform,Minsk. Izdat. Akad. Nauk BSSSR (1964) (Russian).Google Scholar
  10. [10]
    P. J. Davis and P. Rabinowitz,Numerical Integration, Blaisdell Publishing Co., Waltham (1967).Google Scholar
  11. [11]
    A. Erdélyi,et al., Higher Transcendental Functions, McGraw-Hill Book Company, New York (1953).Google Scholar
  12. [12]
    H. L. Krall and O. Frink, A new Class of orthogonal Polynomials: the Bessel Polynomials,Trans. Amer. Math. Soc., 65 (1949) 100–115.Google Scholar
  13. [13]
    E. Grosswald, On some algebraic properties of the Bessel polynomials,Trans. Amer. Math. Soc., (1951) 197–210.Google Scholar
  14. [14]
    A. Van Rossum, A note on the location of the zeros of generalized Bessel polynomials and totally positive polynomials.Nieuw Archief voor Wiskunde 17 (1969) 142–149.Google Scholar
  15. [15]
    R. Piessens,Numerieke metodes voor de inversie van de Laplace Transformatie, Doctoraatstesis, Katholieke Universiteit Leuven, 1970.Google Scholar
  16. [16]
    R. Piessens, New Quadrature Formulas for the Numerical Inversion of the Laplace Transform,BIT, 9 (1969) 351–361.Google Scholar
  17. [17]
    A. Stroud and D. Secrest,Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J. (1966).Google Scholar
  18. [18]
    R. Piessens, Gaussian Quadrature formulas for the Numerical Integration of Bromwich's Integral and the Inversion of the Laplace Transform,Inst. of Applied Math., University of Leuven, (1969).Google Scholar
  19. [19]
    V. I. Krylov and N. S. Skoblya,Handbook of Numerical Inversion of Laplace Transforms. Israel Program for Scientific Translations, Jerusalem (1969) (translated from Russian).Google Scholar

Copyright information

© Wolters-Noordhoff Publishing 1971

Authors and Affiliations

  • R. Piessens
    • 1
  1. 1.Institute for Applied MathematicsUniversity of LeuvenHeverleeBelgium

Personalised recommendations