Journal of Engineering Mathematics

, Volume 5, Issue 1, pp 1–9 | Cite as

Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the laplace transform

  • R. Piessens
Article

Summary

An approximate formula for the inversion of the Laplace transformF(p) is studied. The formula is exact wheneverF(p) is a linear combination ofp−s+k,k=0, 1, 2, ..., 2N−1, withs an arbitrary positive real number. The formula is derived from a gaussian integration formula for Bromwich's inversion integral.

A numerical example is given as illustration of the use of the approximate inversion formula.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. E. Bellman, R. E. Kalaba and J. Lockett,Numerical Inversion of the Laplace Transform, American Elsevier Publishing Company, New York (1966).Google Scholar
  2. [2]
    C. Lanczos,Applied Analysis, Prentice Hall, Englewood Cliffs, N.J. (1956).Google Scholar
  3. [3]
    A. Papoulis, A New Method of Inversion of the Laplace Transform.Quart. Appl. Math., 14 (1956) 405–414.Google Scholar
  4. [4]
    W. T. Weeks, Numerical Inversion of Laplace Transforms using Laguerre Functions,Journal of the A.C.M. 13 (1966) 419–426.Google Scholar
  5. [5]
    H. Dubner and J. Abate, Numerical Inversion of Laplace Transforms and the Finite Cosine Transform,Journal of the A.C.M. 15 (1968) 115–123.Google Scholar
  6. [6]
    H. E. Salzer, Orthogonal Polynomials arising in the Numerical Evaluation of Inverse Laplace Transforms,M.T.A.C. 9, (1955) 164–177.Google Scholar
  7. [7]
    H. E. Salzer, Additional Formulas and Tables for Orthogonal Polynomials originating from Inversion Integrals,J. Math. Phys., 40 (1961) 72–86.Google Scholar
  8. [8]
    V. I. Krylov and N. S. Skoblya, On the numerical Inversion of the Laplace Transform,Inzh.-Fiz. Zh. 4 (1961) 85–101 (Russian).Google Scholar
  9. [9]
    N. S. Skoblya, Tables for the Numerical Inversion of the Laplace Transform,Minsk. Izdat. Akad. Nauk BSSSR (1964) (Russian).Google Scholar
  10. [10]
    P. J. Davis and P. Rabinowitz,Numerical Integration, Blaisdell Publishing Co., Waltham (1967).Google Scholar
  11. [11]
    A. Erdélyi,et al., Higher Transcendental Functions, McGraw-Hill Book Company, New York (1953).Google Scholar
  12. [12]
    H. L. Krall and O. Frink, A new Class of orthogonal Polynomials: the Bessel Polynomials,Trans. Amer. Math. Soc., 65 (1949) 100–115.Google Scholar
  13. [13]
    E. Grosswald, On some algebraic properties of the Bessel polynomials,Trans. Amer. Math. Soc., (1951) 197–210.Google Scholar
  14. [14]
    A. Van Rossum, A note on the location of the zeros of generalized Bessel polynomials and totally positive polynomials.Nieuw Archief voor Wiskunde 17 (1969) 142–149.Google Scholar
  15. [15]
    R. Piessens,Numerieke metodes voor de inversie van de Laplace Transformatie, Doctoraatstesis, Katholieke Universiteit Leuven, 1970.Google Scholar
  16. [16]
    R. Piessens, New Quadrature Formulas for the Numerical Inversion of the Laplace Transform,BIT, 9 (1969) 351–361.Google Scholar
  17. [17]
    A. Stroud and D. Secrest,Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J. (1966).Google Scholar
  18. [18]
    R. Piessens, Gaussian Quadrature formulas for the Numerical Integration of Bromwich's Integral and the Inversion of the Laplace Transform,Inst. of Applied Math., University of Leuven, (1969).Google Scholar
  19. [19]
    V. I. Krylov and N. S. Skoblya,Handbook of Numerical Inversion of Laplace Transforms. Israel Program for Scientific Translations, Jerusalem (1969) (translated from Russian).Google Scholar

Copyright information

© Wolters-Noordhoff Publishing 1971

Authors and Affiliations

  • R. Piessens
    • 1
  1. 1.Institute for Applied MathematicsUniversity of LeuvenHeverleeBelgium

Personalised recommendations