Advertisement

Journal of Engineering Mathematics

, Volume 5, Issue 2, pp 137–155 | Cite as

On finite-difference methods for the Korteweg-de Vries equation

  • A. C. Vliegenthart
Article

Summary

The purpose of this paper is to set up and analyse difference schemes for solving the initial-value problem for the socalled Korteweg-de Vries equation. After the discussion of a difference scheme which is correctly centered in both space and time, the construction of difference schemes which implicitly contain the effect of dissipation is described.

Keywords

Mathematical Modeling Industrial Mathematic Difference Scheme Vries Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,Philos. Mag., 39 (1895) 422–443.Google Scholar
  2. [2]
    C. S. Gardner and G. K. Morikawa, Similarity in the asymptotic behaviour of collision-free hydromagnetic waves and water waves, New York Univ.,Courant Inst. Math. Sci., Res. Report NYO-9082, 1960.Google Scholar
  3. [3]
    H. Washimi and T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude,Phys. Rev. Letters, 17 (1966) 996–998.Google Scholar
  4. [4]
    M. D. Kruskal, Asymptotology in numerical computation: progress and plans on the Fermi-Pasta-Ulam problem,Proceedings of the IBM Scientific Computing Symposium on Large-Scale Problems in Physics (1965).Google Scholar
  5. [5]
    N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and interaction,Nonlinear Partial Differential Equations, Academic Press, New York (1967).Google Scholar
  6. [6]
    L. van Wijngaarden, Linear and non-linear dispersion of pressure pulses in liquid-bubble mixtures,6th Symposium on Naval Hydrodynamics, Washington D.C. (1966).Google Scholar
  7. [7]
    L. van Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles,J. Fluid Mech., 33 (1968) 465–474.Google Scholar
  8. [8]
    A. Sjöberg,On the Korteweg-de Vries equation, Uppsala Univ., Dept. of Computer Sci., Report, 1967.Google Scholar
  9. [9]
    P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves,Comm. Pure Appl. Math., 21 (1968) 467–490.Google Scholar
  10. [10]
    L. J. F. Broer, On the interaction of non-linearity and dispersion in wave propagation: II. Approximate solutions of the reduced Boussinesq equation,Appl. sci. Res., Section B, 12 (1965) 113–129.Google Scholar
  11. [11]
    H. W. Hoogstraten,On non-linear dispersive water waves, Doctoral Thesis, Delft University of Technology (1968).Google Scholar
  12. [12]
    C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation,Phys. Rev. Letters, 19 (1967) 1095–1097.Google Scholar
  13. [13]
    N. J. Zabusky and M. D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,Phys. Rev. Letters, 15 (1965) 240–243.Google Scholar
  14. [14]
    P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,Comm. Pure Appl. Math., 7 (1954) 159–193.Google Scholar
  15. [15]
    P. D. Lax and B. Wendroff, Systems of conservation laws,Comm. Pure Appl. Math., 13 (1960) 217–237.Google Scholar
  16. [16]
    D. H. Peregrine, Calculations of the development of an undular bore,J. Fluid Mech., 25, 2 (1966) 321–330.Google Scholar
  17. [17]
    N. A. Phillips, Numerical weather prediction,Advances in Computers, Vol. 1, Academic Press, New York (1960).Google Scholar
  18. [18]
    A. C. Vliegenthart, Dissipative difference schemes for shallow water equations,J. Eng. Maths., 3 (1969) 81–94.Google Scholar
  19. [19]
    K. V. Roberts and N. O. Weiss, Convective difference schemes,Math. Computation, 20 (1966) 94.Google Scholar
  20. [20]
    R. D. Richtmyer and K. W. Morton,Difference methods for initial-value problems, Second Edition, Interscience Publishers, New York (1967).Google Scholar
  21. [21]
    J. J. Leendertse,Aspects of a computational model for long-period water-wave propagation, Doctoral Thesis, Delft University of Technology (1967).Google Scholar
  22. [22]
    L. J. F. Broer, On the interaction of non-linearity and dispersion in wave propagation: I. Boussinesq's equation,Appl. sci. Res., Section B, 11 (1965) 273–285.Google Scholar
  23. [23]
    J. C. P. Miller,The Airy integral, British Assoc. Adv. Sci. Math. Tables, Part-vol. B, Cambridge Univ. Press, Cambridge (1946).Google Scholar
  24. [24]
    M. Abramowitz and I. A. Stegun,Handbook of mathematical functions, Dover Publications, Inc., New York.Google Scholar

Copyright information

© Wolters-Noordhoff Publishing 1971

Authors and Affiliations

  • A. C. Vliegenthart
    • 1
  1. 1.Department of MathematicsDelft University of TechnologyThe Netherlands

Personalised recommendations