Somatic Cell and Molecular Genetics

, Volume 13, Issue 3, pp 191–204 | Cite as

High-frequency reactivation of X-linked genes in chinese hamster × human hybrid cells

  • Nathan Ellis
  • Elisabeth Keitges
  • Stanley M. Gartler
  • Mariano Rocchi
Article

Abstract

Three genes on the human inactive X chromosome retained in the Chinese hamster x human hybrid cell line X8/6T2 have been reactivated using the demethylating agent, 5-azacytidine (5-aza-CR). Pulse-labeling and histochemical methods permitted detection and measurement of reactivation rates of the hypoxanthine phosphoribosyltransferase (Hpt) and glucose-6-phosphate dehydrogenase (G6pd) genes within 48 h of treatment. About 50% of the cells became active for these genes, which represents a reactivation rate some 30-fold greater than previously reported in similar systems. The phosphoglycerate kinase (Pgk) gene was not reactivated as frequently as the Hptor G6pdgenes. Segregation analysis of progeny of treated cells showed that enzyme-positive and enzyme-negative cells were produced in proportions supporting the notion that 5-aza-CR causes demethylation by replicative loss and that demethylation leads to reactivation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Lyon, M.F. (1973).Biol. Rev. 47:1–35.Google Scholar
  2. 2.
    Gartler, S.M., and Riggs, A.D. (1983).Annu. Rev. Genet. 17:155–190.PubMedGoogle Scholar
  3. 3.
    Gartler, S.M., and Andina, R.J. (1976). InAdvances in Human Genetics, Vol. 7, (eds.) Harris, H., and Hirschhorn, K. (Plenum Press, New York), pp. 99–140.Google Scholar
  4. 4.
    Salzmann, J., DeMars, R., and Burke, P. (1968).Proc. Natl. Acad. Sci. U.S.A. 60:545–552.PubMedGoogle Scholar
  5. 5.
    DeMars, R. (1968).Proc. Natl. Acad. Sci. U.S.A. 61:562–569.PubMedGoogle Scholar
  6. 6.
    Migeon, B.R. (1972).Nature 239:87–89.PubMedGoogle Scholar
  7. 7.
    Kahan, B., and DeMars, R. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1510–1514.PubMedGoogle Scholar
  8. 8.
    Riggs, A.D. (1975).Cytogenet. Cell Genet. 14:9–25.PubMedGoogle Scholar
  9. 9.
    Holliday, R., and Pugh, J.E. (1982).Science 187:226–232.Google Scholar
  10. 10.
    Liskay, R.M., and Evans, R.J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:4895–4898.PubMedGoogle Scholar
  11. 11.
    Chapman, V.M., Kratzer, P.G., Siracusa, L.D., Quarantillo, B.A., Evans, R., and Liskay, R.M. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:5357–5361.PubMedGoogle Scholar
  12. 12.
    Venolia, L., Gartler, S.M., Wassman, E.R., Yen, P., Mohandas, T., and Shapiro, L.J. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:2352–2354.PubMedGoogle Scholar
  13. 13.
    Lester, S.C., Korn, N.J., and DeMars, R. (1982).Somat. Cell Genet. 8:265–284.PubMedGoogle Scholar
  14. 14.
    Mohandas, T., Sparkes, R.S., and Shapiro, L.J. (1981).Science 112:393–396.Google Scholar
  15. 15.
    Graves, J.A.M., and Young, G.J. (1982).Exp. Cell Res. 141:87–97.PubMedGoogle Scholar
  16. 16.
    Hors-Cayla, M.C., Heuertz, S., and Frezal, J. (1983).Somat. Cell Genet. 9:645–657.PubMedGoogle Scholar
  17. 17.
    Wolf, S.F., Jolly, D.J., Lunnen, K.D., Friedman, T., and Migeon, B. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:2806–2810.PubMedGoogle Scholar
  18. 18.
    Yen, P.H., Patel, P., Chinault, A.C., Mohandas, T., and Shapiro, L. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:1759–1763.PubMedGoogle Scholar
  19. 19.
    Toniolo, D., D'Urso, M., Martini, G., Persico, G., Tufano, V., Battistuzzi, G., and Luzzato, L. (1984).EMBO J. 3:1987–1995.PubMedGoogle Scholar
  20. 20.
    Riggs, A.D., Singer-Sam, J., and Keith, D.H. (1985). InBiochemistry and Biology of DNA Methylation,(eds.) Cantoni, G.L., and Razin, A. (Alan R. Liss, New York), pp. 211–222.Google Scholar
  21. 21.
    Yen, P.H., Mohandas, T., and Shapiro, L.J. (1986).Somat. Cell Mol. Genet. 12:153–161.PubMedGoogle Scholar
  22. 22.
    Lindsay, S., Monk, M., Holliday, R., Huschtscha, L., Davies, K.E., Riggs, A.D., and Flavell, R.A. (1985).Ann. Hum. Genet. 49:115–127.PubMedGoogle Scholar
  23. 23.
    Lock, L.F., Melton, D.W., Caskey, C.T., and Martin, G.R. (1986).Mol. Cell. Biol. 6:914–924.PubMedGoogle Scholar
  24. 24.
    Wolf, S.F., and Migeon, B.R. (1982).Nature 295:667–671.PubMedGoogle Scholar
  25. 25.
    Kratzer, P.G., Chapman, V., Lambert, H., Evans, R.W., and Liskey, R.M. (1983).Cell 33:37–42.PubMedGoogle Scholar
  26. 26.
    Paterno, G., Adra, C.N., and McBurney, M.W. (1985).Mol. Cell. Biol. 5:2705–2715.PubMedGoogle Scholar
  27. 27.
    Gartler, S.M., Dyer, K.A., Graves, J.A.M., and Rocchi, M. (1985). InBiochemistry and Biology of DNA Methylation, (eds.) Cantoni, G.L., and Razin, A. (Alan R. Liss, New York), pp. 233–235.Google Scholar
  28. 28.
    Dracopoli, N.C., Rettig, W.J., Albino, A.P., Esposito, D., Archidiacono, N., Rocchi, M., Siniscalco, M., and Old, L.D. (1985).Am. J. Hum. Genet. 37:199–207.PubMedGoogle Scholar
  29. 29.
    Rosenstraus, E., and Chasin, L.A. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:493–497.PubMedGoogle Scholar
  30. 30.
    Archidiacono, N., Rocchi, M., Valente, M., and Fillipi, G. (1979).Hum. Genet. 52:69–77.PubMedGoogle Scholar
  31. 31.
    Mosley, S.T., Brown, M.S., Anderson, R.G.W., and Goldstein, J.L. (1983).J. Biol. Chem. 258:13875–13881.PubMedGoogle Scholar
  32. 32.
    Wajntal, A., and DeMars, R. (1967).Biochem. Genet. 1:61–71.PubMedGoogle Scholar
  33. 33.
    Meera Khan, P. (1971).Arch. Biochem. Biophys. 145:470–483.PubMedGoogle Scholar
  34. 34.
    Reddy, A.L., Caldwell, M., and Fialkow, P.J. (1987).Int. J. Cancer 39:261–265.PubMedGoogle Scholar
  35. 35.
    Goto, K., Maeda, S., Kano, Y., and Sugiyama, T. (1978).Chromosoma 66:351–359.PubMedGoogle Scholar
  36. 36.
    Willard, H.F. (1977).Chromosoma 61:61–73.PubMedGoogle Scholar
  37. 37.
    Schimke, R.T., Sherwood, S.W., Hill, A.B., and Johnston, R.N. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2157–2161.PubMedGoogle Scholar
  38. 38.
    Hill, A.B., and Schimke, R.T. (1985).Cancer Res. 45:5050–5057.PubMedGoogle Scholar
  39. 39.
    Goodfellow, P.N., Davies, K.E., and Ropers, H.-H. (1985).Cytogenet. Cell Genet. 40:296–352.PubMedGoogle Scholar
  40. 40.
    Jones, P.A., and Taylor, S.M. (1980).Cell 20:85–93.PubMedGoogle Scholar
  41. 41.
    Compere, S.J., and Palmiter, R.D. (1981).Cell 25:233–240.PubMedGoogle Scholar
  42. 42.
    Creusot, F., Acs, G., and Christman, J.K. (1982).J. Biol. Chem. 257:2041–2048.PubMedGoogle Scholar
  43. 43.
    Razin, A., Szyf, M., Kafri, T., Roll, M., Giloh, H., Scarpa, S., Carotti, D., and Cantoni, G.L. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2827–2831.PubMedGoogle Scholar
  44. 44.
    Schmidt, M., Wolf, S.F., and Migeon, B.R. (1985).Exp. Cell. Res. 158:301–310.PubMedGoogle Scholar
  45. 45.
    Jablonka, E., Goitein, R., Marcus, M., and Cedar, H. (1985).Chromosoma 93:152–156.PubMedGoogle Scholar
  46. 46.
    Shafer, D.A., and Priest, J.H. (1984).Am. J. Hum. Genet. 36:534–545.PubMedGoogle Scholar
  47. 47.
    Goldman, M.A., Holmquist, G.P., Gray, M.C., Caston, L.A., and Nag, A. (1984).Science 224:686–692.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Nathan Ellis
    • 1
  • Elisabeth Keitges
    • 2
  • Stanley M. Gartler
    • 2
  • Mariano Rocchi
    • 3
  1. 1.Department of GeneticsUniversity of WashingtonSeattle
  2. 2.Departments of Medicine and Genetics, and the Center for Inherited DiseasesUniversity of WashingtonSeattle
  3. 3.Laboratorio di Genetica MolecolareInstituto Giannina GasliniGenovaItaly

Personalised recommendations