Advertisement

Somatic Cell and Molecular Genetics

, Volume 14, Issue 1, pp 93–98 | Cite as

Genes for human vitamin K-dependent plasma proteins C and S are located on chromosomes 2 and 3, respectively

  • George L. Long
  • Angus Marshall
  • Julia C. Gardner
  • Susan L. Naylor
Brief Communication

Abstract

cDNAs encoding human proteins C and S have been used to screen a panel of mouse-human somatic cell hybrids to determine the chromosomal location of their respective genes. The gene for human protein C is located on chromosome 2, whereas that for protein S is located on chromosome 3. Analysis of human genomic DNA restriction endonuclease fragmentation patterns suggests that the human protein S gene is greater than 40 kb in size and contains a minimum of 11 introns.

Keywords

Restriction Endonuclease Somatic Cell Plasma Protein Chromosomal Location Human Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Stenflo, J. (1984).Semin. Thromb. Hemostasis 10:109–121.Google Scholar
  2. 2.
    Clouse, L.H., and Comp, P.C. (1986).N. Engl. J. Med. 314:1298–1304.PubMedGoogle Scholar
  3. 3.
    Esmon, C.T., and Owen, W.G. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:2249–2252.PubMedGoogle Scholar
  4. 4.
    Esmon, N.L., Woen, W.G., and Esmon, C.T. (1982).J. Biol. Chem. 257:859–864.PubMedGoogle Scholar
  5. 5.
    Kisiel, W., Canfield, W.M., Ericsson, L.H., and Davie, E.W. (1977).Biochemistry 16:5824–5831.PubMedGoogle Scholar
  6. 6.
    Vehar, G.A., and Davie, E.W. (1980).Biochemistry 19:401–410.PubMedGoogle Scholar
  7. 7.
    Walker, F.J. (1984).Semin. Thromb. Hemostasis 10:131–138.Google Scholar
  8. 8.
    Walker, F.J. (1981).J. Biol. Chem. 256:11128–11131.PubMedGoogle Scholar
  9. 9.
    Harris, K.W., and Esmon, C.T. (1985).J. Biol. Chem. 260:2007–2010.PubMedGoogle Scholar
  10. 10.
    Stern, D.M., Nawroth, P., Harris, K.W., and Esmon, C.T. (1986).J. Biol. Chem. 261:713–718.PubMedGoogle Scholar
  11. 11.
    Gardiner, J.E., and Griffin, J.H. (1983). InProgress in Hematology, Vol XIII, (ed.) Brown, E.B. (Grune and Stratton, city), pp. 265–278.Google Scholar
  12. 12.
    Seligson, U., Beyer, A., Abend, M.,et al. (1984).N. Engl. J. Med. 310:559–562.PubMedGoogle Scholar
  13. 13.
    Brockmans, A.W. (1985).Haemostasis 15:233–240.PubMedGoogle Scholar
  14. 14.
    Schwarz, H.P., Heeb, M.J., Wencel-Drake, J.D., and Griffin, J.H. (1985).Blood 66:1452–1455.PubMedGoogle Scholar
  15. 15.
    Bertina, R.M. (1985).Haemostasis 15:241–246.PubMedGoogle Scholar
  16. 16.
    Gladson, C.L., Griffin, J.H., Hack, V., Beck, K.H., and Schaner, I. (1985).Blood 66:350a.Google Scholar
  17. 17.
    Beckman, R.J., Schmidt, R.J., Santerre, R.F., Plutzky, J., Crabtree, G.R., and Long, G.L. (1985).Nucleic Acids Res. 13:5233–5247.PubMedGoogle Scholar
  18. 18.
    Hoskins, J.A., Norman, D.K., Beckmann, R.J., and Long, G.L. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:349–353.PubMedGoogle Scholar
  19. 19.
    Suttie, J.W. (1985).Annu. Rev. Biochem. 54:459–477.PubMedGoogle Scholar
  20. 20.
    Fernlung, P., and Stenflo, J. (1983).J. Biol. Chem. 258:12509–12512.PubMedGoogle Scholar
  21. 21.
    Stenflo, J., Lundwall, A., and Dahlback, B. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:368–372.PubMedGoogle Scholar
  22. 22.
    Davidson, R.L., and Gerald, P.S. (1976).Somat. Cell Genet. 2:165–176.PubMedGoogle Scholar
  23. 23.
    Littlefield, J.W. (1964).Science 145:709–710.PubMedGoogle Scholar
  24. 24.
    Naylor, S.L., Sakaguchi, A.Y., Szoka, P., Hendy, G.N., Kronenberg, H.M., Rich, A., and Shows, T.B. (1983).Somat. Cell Genet. 9:609–616.PubMedGoogle Scholar
  25. 25.
    Shows, T.B., Sakaguchi, A.Y., and Naylor, S.L. (1982).Adv. Hum. Genet. 12:341–452.PubMedGoogle Scholar
  26. 26.
    Southern, E.M. (1975).J. Mol. Biol. 98:503–517.PubMedGoogle Scholar
  27. 27.
    Naylor, S.L., Sakaguchi, A.Y., Shows, T.B., Law, M.L., Goeddel, D.V., and Gray, P.W. (1983).J. Exp. Med. 157:1020–1027.PubMedGoogle Scholar
  28. 28.
    Young, R.A., and Davis, R.W. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:1194–1198.PubMedGoogle Scholar
  29. 29.
    Rigby, P.W.J., Dieckman, M., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–251.PubMedGoogle Scholar
  30. 30.
    Rocchi, M., Roncuzzi, L., Santamaria, R., Sbarra, D., Mochi, M., Archrdiacono, N., Covone, A., Corese, R., and Romes, G. (1985).Cytogenet. Cell Genet. 40:734.Google Scholar
  31. 31.
    Foster, D.C., Yoshitake, S., and Davie, E.W. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:5653–5656.PubMedGoogle Scholar
  32. 32.
    Plutzky, J., Hoskins, J.A., Long, G.L., and Crabtree, G.R. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:546–550.PubMedGoogle Scholar
  33. 33.
    Bernardi, G., and Bernardi, G. (1986).Cold Spring Harbor Symp. Quant. Biol. 51:479–487.PubMedGoogle Scholar
  34. 34.
    O'Hara, P.J., Grant, F.J., Haldeman, B.A., et al. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:(in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • George L. Long
    • 1
  • Angus Marshall
    • 2
  • Julia C. Gardner
    • 2
  • Susan L. Naylor
    • 2
  1. 1.Department of Biochemistry, College of MedicineUniversity of VermontBurlington
  2. 2.Department of Cellular and Structural BiologyThe University of Texas Health Science Center at San AntonioSan Antonio

Personalised recommendations