Somatic Cell and Molecular Genetics

, Volume 11, Issue 4, pp 345–352 | Cite as

DNA-mediated transfer of complex I genes into three different respiration-deficient Chinese hamster mutant cell lines with defects in complex I of electron transport chain

  • Karen E. Garnett
  • William A. Simmons
  • Mark S. Wing
  • Gail A. M. Breen


We have used genomic DNA from human or mouse cells as a calcium phosphate precipitate to transfect three different respiration-deficient Chinese hamster mutant cell lines with defects in complex I of the electron transport chain. Transformants were selected in DMEM containing galactose, a medium in which respiration-deficient cells do not grow. Evidence for the DNA-mediated transformation of these respiration-deficient cells with a putative complex I gene includes: (1) the clones are respiration-positive and respire at rates comparable to those of wild-type human, hamster, or mouse cells; (2) the clones have rotenone-sensitive NADH oxidase activities, indicating a functional complex I of the electron transport chain; and (3) the clones appear to be true transformants, as demonstrated by hybridization and Southern blot analyses. These experiments provide the basis for the isolation and subsequent characterization of several of the genes involved with complex I of the mammalian electron transport chain.


Calcium Blot Analysis Galactose Southern Blot Oxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ragan, C.I. (1976).Biochim. Biophys. Acta 456:249–290.PubMedGoogle Scholar
  2. 2.
    Hatefi, Y. (1976). InThe Enzymes of Biological Membranes 4, (ed.) Martonosi, A. (Plenum Press, New York), pp. 3–41.Google Scholar
  3. 3.
    Hatefi, Y., Galante, Y.M., Stiggall, D.L., and Ragan, C.I. (1979).Methods Enzymol. 56:577–602.PubMedGoogle Scholar
  4. 4.
    Heron, C., Smith, C., and Ragan, C.I. (1979).Biochem. J. 181:435–443.PubMedGoogle Scholar
  5. 5.
    Hare, J.F., and Hodges, R. (1982).Biochem. Biophys. Res. Commun. 105:1250–1256.PubMedGoogle Scholar
  6. 6.
    Day, C.E., and Scheffler, I.E. (1982).Somat. Cell Genet. 8:691–707.PubMedGoogle Scholar
  7. 7.
    Ditta, G., Soderberg, K., Landy, F., and Scheffler, I.E. (1976).Somat. Cell Genet. 2:331–344.PubMedGoogle Scholar
  8. 8.
    deFrancesco, L., Scheffler, I.E., and Bissell, M.J. (1976).J. Biol. Chem. 251:4588–4595.PubMedGoogle Scholar
  9. 9.
    Soderberg, K.L., Mascarello, J.T., Breen, G.A.M., and Scheffler, I.E. (1979).Somat. Cell Genet. 5:225–240.PubMedGoogle Scholar
  10. 10.
    Breen, G.A.M., and Scheffler, I.E. (1979).Somat. Cell Genet. 5:441–451.PubMedGoogle Scholar
  11. 11.
    Pellicer, A., Wigler, M., Axel, R., and Silverstein, S. (1978).Cell 14:133–141.PubMedGoogle Scholar
  12. 12.
    Graham, F.L., and van der Eb, A.J. (1973).Virology 52:456–467.PubMedGoogle Scholar
  13. 13.
    Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. (1978).Cell 14:725–731.PubMedGoogle Scholar
  14. 14.
    Parker, B.A., and Stark, G.R. (1979).J. Virol. 31:360–369.PubMedGoogle Scholar
  15. 15.
    Southern, E.M. (1975).J. Mol. Biol. 98:503–517.PubMedGoogle Scholar
  16. 16.
    Wahl, G.M., Stern, M., and Stark, G.R. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:3683–3687.PubMedGoogle Scholar
  17. 17.
    Rigby, P., Dieckman, N., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–251.PubMedGoogle Scholar
  18. 18.
    Ditta, G., Soderberg, K., and Scheffler, I.E. (1977).Nature 268:64–67.PubMedGoogle Scholar
  19. 19.
    deFrancesco, L., Werntz, D., and Scheffler, I.E. (1975).J. Cell. Physiol. 85:293–306.PubMedGoogle Scholar
  20. 20.
    Scheffler, I.E. (1974).J. Cell. Physiol. 83:219–230.PubMedGoogle Scholar
  21. 21.
    Singer, T.P. (1979).Methods Enzymol. 55:454–462.PubMedGoogle Scholar
  22. 22.
    Rubin, J.S., Joyner, A.L., Bernstein, A., and Whitmore, G.F. (1983).Nature 306:206–208.PubMedGoogle Scholar
  23. 23.
    Ayusawa, D., Shimizu, K., Koyama, H., Takeishi, K., and Seno, T. (1983).J. Biol. Chem. 258:48–53.PubMedGoogle Scholar
  24. 24.
    Soderberg, E., Nissinen, E., Bakay, B., and Scheffler, I.E. (1980).J. Cell. Physiol. 103:169–172.PubMedGoogle Scholar
  25. 25.
    Sun, N.C., Chang, C.C., and Chu, E.H.Y. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:469–473.PubMedGoogle Scholar
  26. 26.
    Jelinek, W., Toomey, T., Leinwand, L., Duncan, C.H., Biro, P.A., Chaudary, P.V., Weissman, S., Rubin, C., Houck, C., Deininger, P.L., and Schmid, C.W. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:1398–1402.PubMedGoogle Scholar
  27. 27.
    Gusella, J.F., Keys, C., Varsanyi-Breiner, A., Kao, F.-T., Jones, C., Puck, T.T., and Housman, D. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:2829–2833.PubMedGoogle Scholar
  28. 28.
    Shih, C., and Weinberg, R.A. (1982).Cell 29:161–169.PubMedGoogle Scholar
  29. 29.
    Jolly, D.J., Esty, A.C., Bernard, H.U., and Friedmann, T. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:5038–5041.PubMedGoogle Scholar
  30. 30.
    Bradshaw, H.D., Jr. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:5588–5591.PubMedGoogle Scholar
  31. 31.
    Maiti, I.B., deSouza, C., and Thirion, J.-P. (1981).Somat. Cell Genet. 7:567–582.PubMedGoogle Scholar
  32. 32.
    Whitfield, C.D., Bostedor, R., Goodrum, D., Haak, M., and Chu, E.H.Y. (1981).J. Biol. Chem. 256:6651–6656.PubMedGoogle Scholar
  33. 33.
    Malczewski, R.M., and Whitfield, C.D. (1984).J. Biol. Chem. 259:11103–11113.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Karen E. Garnett
    • 1
  • William A. Simmons
    • 1
  • Mark S. Wing
    • 1
  • Gail A. M. Breen
    • 1
  1. 1.Biology ProgramsThe University of Texas at DallasRichardson

Personalised recommendations