Inflammation

, Volume 19, Issue 1, pp 133–142 | Cite as

Functional characterization of rat chemokine macrophage inflammatory protein-2

  • Charles W. Frevert
  • Anthony Farone
  • Hadi Danaee
  • Joseph D. Paulauskis
  • Lester Kobzik
Original Articles

Abstract

Expression of mRNA for the C-X-C chemokine, macrophage inflammatory protein-2 (MIP-2), is induced during acute inflammation in rat models of disease. We have characterized the phlogistic potential of rat recombinant MIP-2 (rMIP-2) protein in vitro and in vivo. Recombinant MIP-2 caused marked PMN chemotaxis in vitro, with peak chemotactic activity at 10 nM. Incubation of whole blood with rMIP-2 caused a significant loss of L-selectin and a significant increase in Mac-1 expression on the PMN surface. Under similar conditions rMIP-2 also caused a modest respiratory burst in PMNs. The intratracheal instillation of 10 and 50μg of rMIP-2 caused a significant influx of PMNs into the airspace of the lungs. Rat MIP-2 is a potent neutrophil chemotactic factor capable of causing neutrophil activation and is likely to function in PMN recruitment during acute inflammation in rat disease models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolpe, S. D., B. Sherry, D. Juers, G. Davatelis, R. W. Yurt, andA. Cerami. 1989. Identification and characterization of macrophage inflammatory protein 2.Proc. Natl. Acad. Sci. U.S.A. 86:612–616.PubMedGoogle Scholar
  2. 2.
    Tekamp-Olson, P., C. Gallegos, D. Bauer, J. McClain, B. Sherry, M. Fabre, S. van Deventer, andA. Cerami. 1990. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues.J. Exp. Med. 172:911–919.PubMedGoogle Scholar
  3. 3.
    Miller, M. D., andM. S. Krangel. 1992. Biology and biochemistry of the chemokines: A family of chemotactic and inflammatory cytokines.Crit. Rev. Immunol. 12:17–46.PubMedGoogle Scholar
  4. 4.
    Walz, A., F. Meloni, I. Clark-Lewis, V. von Tscharner, andM. Baggiolini. 1991. [Ca++] changes and respiratory burst in human neutrophils and monocytes by NAP-1/interleukin-8, NAP-2 andgro/MGSA.J. Leukocyte Biol. 50:279–286.PubMedGoogle Scholar
  5. 5.
    Derynck, R., E. Balentien, J. H. Han, H. G. Thomas, D. Wen, A. K. Samantha, C. O. Zachariae, P. R. Griffin, R. Brachmann, W. L. Wong, K. Matsuchima, andA. Rich-Mond. 1990. Recombinant expression, biochemical characterization, and biological activities of the human MGSA/gro protein.Biochemistry 29:10225–10233.PubMedGoogle Scholar
  6. 6.
    Huang, S., J. D. Paulauskis, J. J. Godleski, andL. Kobzik. 1992. Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation.Am. J. Pathol. 141:981–988.PubMedGoogle Scholar
  7. 7.
    Huang, S., A. Farone, J. D. Paulauskis, J. J. Godleski, andL. Kobzik. 1993. Expression of neutrophil chemoattratant cytokines, KC and MIP-2 in a rat model of SO2-induced bronchitis.Am. Rev. Respir. Dis. 147:A751.Google Scholar
  8. 8.
    Rose, C. E., C. A. Juliano, D. E. Tracey, T. Yoshimura, andS. M. Fu. 1994. Role of interleukin-1 in endotoxin-induced lung injury in the rat.Am. J. Respir. Cell. Mol. Biol. 10:214–221.PubMedGoogle Scholar
  9. 9.
    Sanger, F., S. Nicklen, andA. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. U.S.A. 74:54673–54678.Google Scholar
  10. 10.
    Schagger, H., andG. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa.Anal. Biochem. 166:368–379.PubMedGoogle Scholar
  11. 11.
    Salzman, G. C., J. M. Crowell, B. A. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, andP. M. Labauve. 1975. Cell classification by laser light scattering: Identification and separation of unstained leukocytes.Acta Cytol. 19:374–377.PubMedGoogle Scholar
  12. 12.
    Freeman, G. E., C. A. Dalton, andP. M. Brooks. 1991. A Nycodenz gradient method for the purification of neutrophils from the peripheral blood of rats.J. Immunol. Methods 139:241–249.PubMedGoogle Scholar
  13. 13.
    Bass, D. A., J. W. Parce, L. R. Dechatelet, P. Szejda, M. C. Seeds, andM. Thomas. 1983. Flow cyometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation.J. Immunol. 130:1910–1917.PubMedGoogle Scholar
  14. 14.
    Tamatani, T., M. Kotani, andM. Miyasaka. 1991. Characterization of the rat leukocyte integrin, CD11/CD18, by the use of LFA-1 subunit-specific monoclonal antibodies.Eur. J. Immunol. 21:627–633.PubMedGoogle Scholar
  15. 15.
    Robinson, A. P., T. M. White, andD. W. Mason. 1986. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3.Immunology 57:239–247.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Charles W. Frevert
    • 1
  • Anthony Farone
    • 1
  • Hadi Danaee
    • 1
  • Joseph D. Paulauskis
    • 1
  • Lester Kobzik
    • 1
    • 2
  1. 1.Physiology ProgramHarvard School of Public HealthUSA
  2. 2.Department of PathologyBrigham and Women's HospitalBoston

Personalised recommendations