Advertisement

Inflammation

, Volume 19, Issue 1, pp 83–99 | Cite as

Effects of interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) on neutrophil elastase release

  • U. Bank
  • D. Reinhold
  • D. Kunz
  • H. -U. Schulz
  • Ch. Schneemilch
  • W. Brandt
  • S. Ansorge
Original Articles

Abstract

The proinflammatory cytokine interleukin-6 (IL-6) and its potential opponent, transforming growth factor-β (TGF-β1), have been discussed as being involved in the regulation of inflammatory processes following trauma and infections. The aim of this study was to investigate the effect of these cytokines on the regulation of neutrophil degranulation. The posttraumatic time courses of the plasma concentrations of IL-6, and the elastase-α1-proteinase-inhibitor complex as marker of degranulation in patients undergoing severe trauma were found to be highly correlated, whereas TGF-β1 levels were determined to be not significantly altered. The close temporal correlation of IL-6 and elastase levels could be confirmed by investigation of exudates derived from the surgical area. To prove these in vivo findings, the effect of IL-6 and TGF-β1 on the degranulation of isolated neutrophils of healthy donors was investigated in vitro. Pathological high IL-6 concentrations were found to be capable of inducing a significant release of lysosomal elastase in a concentration-dependent manner, whereas the degranulation was unaffected by TGF-β1. In conclusion, these data suggest an involvement of IL-6 in the regulation of neutrophil degranulation under pathological conditions. However, TGF-β1 seems to have no direct regulatory effect besides its described chemotactic function on neutrophils.

Keywords

Temporal Correlation Neutrophil Elastase Severe Trauma Significant Release Potential Opponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, B. B., andE. Pocsik. 1992. Cytokines: From clone to clinic.Arch. Biochem. Biophys. 292(2):335–359.PubMedGoogle Scholar
  2. 2.
    Billau, A., andF. Vanderkerkhove. 1991. Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock.Eur. J. Clin. Invest. 21:559–573.PubMedGoogle Scholar
  3. 3.
    Bauer, J. 1989. Interleukin-6 and its receptor during homeostasis, inflammation, and tumor growth.Klin. Wochenschr. 67:697–706.PubMedGoogle Scholar
  4. 4.
    Hirano, T. 1992. The biology of interleukin-6.In Interleukins: Molecular Biology and Immunology. Chemical Immunology, Vol. 51. Kishimoto, editor. Karger, Basel. 153–180.Google Scholar
  5. 5.
    Zhou, D., A. Munster, andR. A. Winchurch. 1991. Pathologic concentrations of interleukin 6 inhibit T cell responses via induction of activation of TGF-β.FASEB J. 5:2582–2585.PubMedGoogle Scholar
  6. 6.
    Aida, Y., andM. J. Pabst. 1991. Neutrophil responses to lipopolysaccharide. Effect of adherence on triggering and priming the respiratory burst.J. Immunol. 146(4):1271–1276.PubMedGoogle Scholar
  7. 7.
    Kasimir, S., J. Brom, andW. König. 1991. Effect of interferon-alpha on neutrophil functions.Immunology 74:271–278.PubMedGoogle Scholar
  8. 8.
    Baggiolini, M., P. Imboden, andP. Detmers. 1992. Neutrophil activation and effects of interleukin-8/neutrophil-activating peptide 1 (IL-8/NAP-).In Interleukin-8 (NAP-1) and Related Cytokines. Cytokines, Vol. 4. M. Baggiolini and C. Sorg, editors. Karger, Basel. 1–17.Google Scholar
  9. 9.
    Tennenberg, S. D. 1991. The effect of inflammatory mediators on neutrophil function.In New Aspects of Human Polymorphnuclear Leukocytes. J. Hörl and P. J. Schollmeyer, editors. Plenum Press, New York. 75–92.Google Scholar
  10. 10.
    Brandt, E., J. Van Damme, andH.-D. Flad. 1991. Neutrophils can generate their activator neutrophil activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III.Cytokine 3/4:311–321.Google Scholar
  11. 11.
    Porteu, F., M. Brockhaus, D. Wallach, H. Engelmann, andC. F. Nathan. 1991. Human neutrophil elastase releases a ligand-binding fragment from the 75kDa tumor necrosis factor (TNF) receptor. Comparison with the proteolytic activity responsible for shedding of TNF receptor from stimulated neutrophils.J. Biol. Chem. 266(28):18846–18853.PubMedGoogle Scholar
  12. 12.
    Janusz, M. J., andN. S. Doherty. 1991. Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin G.J. Immunol. 146(11):3922–3928.PubMedGoogle Scholar
  13. 13.
    Scuderi, P., P. A. Nez, M. L. Duerr, B. J. Wong, andC. M. Valdez. 1991. Cathepsin-G and leukocyte elastase inactivate tumor necrosis factor and lymphotoxinCell. Immunol. 135:299–313.PubMedGoogle Scholar
  14. 14.
    Michaelis, J., M. C. M. Vissers, andC. C. Winterbourn. 1990. Human neutrophil collagenase cleavesα 1-antitrypsin.Biochem. J. 270:809–814.PubMedGoogle Scholar
  15. 15.
    Brown, D. M., G. M. Brown, W. Macnee, andK. Donaldson. 1992. Activated human peripheral blood neutrophils produce epithelial injury and fibronectin breakdown in vitro.Inflammation 16(1):21–29.PubMedGoogle Scholar
  16. 16.
    Jochum, M., I. Assfalg-Machleidt, D. Inthorn, D. Nast-Kolb, Ch. Waydhas, andH. Fritz. 1990. Leukozytäre Proteinasen und Hämostasestörung bei der Sepsis.In Infektion, Entzündung und Blutgerinnung. V. Tilsner and F. R. Matthias, editors. Editiones Roche, Basel. 241–254.Google Scholar
  17. 17.
    Tanaka, H., H. Sugimoto, T. Yoshiharu, andT. Sugimoto. 1991. Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple-organ failure.Ann. Surg. 213(1):81–85.PubMedGoogle Scholar
  18. 18.
    Bøyum, A. 1968. Isolation of mononuclear cells and granulocytes by one step centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1g. Scand.J. Clin. Lab. Invest. 21(suppl. 97):77.PubMedGoogle Scholar
  19. 19.
    Ohazo, H., K. Yoshizaki, N. Nishimoto, A. Ogata, H. Thago, M. Monden, M. Gotoh, T. Kishimoto, andT. Mori. 1992. Interleukin-6 as a new indicator of inflammatory status: Detection of serum levels of interleukin-6 and C-reactive protein after surgery.Surgery 111(2):201–209.PubMedGoogle Scholar
  20. 20.
    Padova, F. D., C. Pozzi, M. J. Tondre, andR. Tritapepe. 1991. Selective and early increase of IL-1 inhibitors, IL-6 and cortisol after elective surgery.Clin Exp. Immunol. 85:137–142.PubMedGoogle Scholar
  21. 21.
    Nuijens, J. H. E., J. J. Abbink, Y. T. Wachtvogel, R. W. Coleman, A. J. M. Eerenberg, D. Dors, A. M. J. Kamp, R. J. M. Strack van Schijndel, L. G. Thijs, andC. E. Hack. 1992. Plasma elastase-α 1-antitrypsin and lactoferrin in sepsis: Evidence for neutrophils as mediators in fatal sepsis.J. Lab. Clin. Med. 119:159–168.PubMedGoogle Scholar
  22. 22.
    Függer, R., E. Zadrobilek, P. Götzinger, S. Klimann, M. Rogy, S. Winkler, H. Andel, M. MittelbÖck, E. Roth, F. Schulz, andA. Fritsch. 1993. Perioperative TNF-α and IL-6 concentrations correlate with septic state, organ function, and APACHE II scores in intraabdominal infection.Eur. J. Surg. 159:525–529.PubMedGoogle Scholar
  23. 23.
    Waydhas, Ch., D. Nast-Kolb, M. Jochum, A. Trupka, S. Lenk, H. Fritz, K.-H. Duswald, andL. Schweiberer. 1992. Inflammatory mediators, infections, sepsis, and multiorgan failure in after severe trauma.Arch. Surg. 127:460–467.PubMedGoogle Scholar
  24. 24.
    Pullicino, E. A., F. Carli, S. Poole, B. Rafferty, S. T. A. Malik, andM. Elia. 1990. The relationship between circulating concentrations of interleukin-6 (IL-6), tumor necrosis factor (TNF) and the acute phase response to elective surgery and accidental injury.Lymphokine Res. 9(2):231–238.PubMedGoogle Scholar
  25. 25.
    Shenkin, A., W. D. Fraser, J. Series, F. P. Winstanley, A. C. McCartney, H. G. J. Burns, andJ. Van Damme. 1989. The serum interleukin-6 response to elective surgery.Lymphokine Res. 8(2): 123–127.PubMedGoogle Scholar
  26. 26.
    Dofferhoff, A. S. M., V. J. J. Bom, H. G. De Vries-Hospers, J. Van Ingen, J. VD Meer, B. P. C. Hazenberg, P. O. M. Mulder, andJ. Weits. 1992. Patterns of cytokines, plasma endotoxin, plasminogen activator inactivator, and acute phase proteins during the treatment of severe sepsis.Crit. Care Med. 20:185–192.PubMedGoogle Scholar
  27. 27.
    Wakefield, L. M., D. M. Smith, K. C. Flanders, andM. B. Sporn. 1988. Latent Transforming growth factor-β from human platelets. A high molecular weight complex containing precursor sequences.J. Biol. Chem. 263(16):7646–7654.PubMedGoogle Scholar
  28. 28.
    Miyazono, K., andC. H. Heldin. 1991. Latent forms of TGF-β molecular structure and mechanisms of activation.In Clinical Applications of TGF-β. G. R. Bock and J. March, editors. John Wiley & Sons, New York.Google Scholar
  29. 29.
    Wahl, S. M. 1992. Transforming growth factor-β (TGF-β) in inflammation: A cause and a cure.J. Clin. Immunol. 12(2):61–74.PubMedGoogle Scholar
  30. 30.
    Henschler, R., A. Lindermann, M. A. Brach, A. Mackensen, R. H. Mertelsmann, andF. Herrmann. 1991. Expression of functional receptors for interleukin-6 by human polymorphnuclear leucocytes.FEBS Lett. 283(1):47–51.PubMedGoogle Scholar
  31. 31.
    Kapp, A., andG. Zeck-Kapp. 1990. Activation of the oxidative metabolism in human polymorphnuclear neutrophilic granulocytes: The role of immuno-stimulating cytokines.J. Invest. Dermatol. 95(6, suppl.):94S-99S.PubMedGoogle Scholar
  32. 32.
    Brom, J., andW. König. 1992. Cytokine-induced (interleukins-3, -6 and -8 and tumor necrosis factor-beta) activation and deactivation of human neutrophils.Immunology 75:281–285.PubMedGoogle Scholar
  33. 33.
    Borish, L., R. Rosenbaum, L. Albury, andS. Clark. 1989. Activation of neutrophils by recombinant interleukin-6.Cell. Immunol. 121(2):280–289.PubMedGoogle Scholar
  34. 34.
    Henson, P. M., J. E. Henson, C. Fittschen, D. L. Bratton, andD. W. H. Riches. 1992. Degranulation and secretion by phagocytic cells.In Inflammation: Basic Principles and Clinical Correlates. J. I. Gallin, I. M. Goldstein, and R. Snyderman, editors. Raven Press, New York. 511–539.Google Scholar
  35. 35.
    Kuijpers, T. W., A. T. J. Toll, C. E. Van der Schoot, L. A. Ginsel, J. J. M. Onderwater, D. Roos, andA. J. Verhoeven. 1991. Membran surface antigen expression on neutrophils a reappraisal of the use of surface markers for neutrophil activation.Blood 78(4):1105–1111.PubMedGoogle Scholar
  36. 36.
    Lipschitz, D. A., K. B. Udupa, S. R. Indelicato, andM. Das. 1991. Effect of age on second messenger generation in neutrophils.Blood 78(5):1347–1354.PubMedGoogle Scholar
  37. 37.
    Brandes, M. E., U. E. Mai, K. Ohura, andS. M. Wahl. 1991. Type I transforming growth factor-β receptors mediate chemotaxis to transforming growth factor-β.J. Immunol. 147:1600–1606.PubMedGoogle Scholar
  38. 38.
    Reibmann, J., S. Meixler, T. C. Lee, L. I. Gold, B. N. Cronstein, K. A. Haines, S. L. Kolanski, andG. Weissmann. 1991. Transforming growth factor-β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways.Proc. Natl. Acad. Sci. U.S.A. 88:6805–6809.PubMedGoogle Scholar
  39. 39.
    Petersen, F., J. Van Damme, H.-D. Flad, andE. Brandt. 1991. Neutrophil activation polypeptides IL-8 and NAP-2 induce identical signal transduction pathways in the regulation of lysosomal enzyme release.Lymphokine Cytokine Res. 10(1):35–41.PubMedGoogle Scholar
  40. 40.
    Zhou, D., A. M. Munster, andR. A. Winchurch. 1992. Inhibitory effects of interleukin-6 on immunity. Possible implications in burn patients.Arch. Surg. 127:65–69.PubMedGoogle Scholar
  41. 41.
    Miller-Graziano, C. L., G. Szabo, K. Griffey, B. Metha, K. Kodys, andD. Catalano. 1991. Role of elevated monocyte transforming growth factorβ (TGFβ) production in post-trauma immunosuppression.J. Clin. Immunol. 11(2):95–102.PubMedGoogle Scholar
  42. 42.
    Ogle, J. D., J. G.Noel, R. M.Sramkowsi, C. K.Ogle, and W. J.Alexander. Effects of combination of tumor necrosis factor alpha and chemotactic peptide f-Met-Leu-Phe, on phagocytosis of opsonized microspheres by human neutrophils.Inflammation 16(1):57–68.Google Scholar
  43. 43.
    Yuo, A., S. Kitagawa, T. Kasahara, K. Matsushima, M. Saito, andF. Takaku. 1991. Stimulation and priming of human neutrophils by interleukin-8: Cooperation with tumor necrosis factor and colony-stimulating factors.Blood 78(10):2708–2714.PubMedGoogle Scholar
  44. 44.
    Elbim, C., S. Chollet-Martin, S. Bailly, J. Hakim, andM.-A. Gouregot-Pocidalo. 1993. Priming of polymorphnuclear neutrophils by tumor necrosis factorα in whole blood: Identification of two polymorphnuclear neutrophils subpopulation in response to formyl-peptides.Blood 82(2):633–640.PubMedGoogle Scholar
  45. 45.
    Tennenberg, D., M. J. Jacobs, andJ. S. Solomkin. 1987. Complement-mediated neutrophil activation in sepsis- and trauma adult respiratory distress synchrome: Clarification with radioaerosol lung scans.Arch. Surg. 122:26.PubMedGoogle Scholar
  46. 46.
    Cicco, N. A., A. Lindemann, J. Content, P. Vandenbussche, M. Lübbert, J. Gauss, R. Mertelsmann, andF. Herrmann. 1990. Inducible production of Interleukin-6 by human polymorphnuclear neutrophils: Role of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha.Blood 75(10):2049–2052.PubMedGoogle Scholar
  47. 47.
    Lloyd, A. R., andJ. J. Oppenheim. 1992. Poly's lament: the neglected role of the polymorphnuclear neutrophil in the afferent limb of the immune response.Immunol. Today 13(5):169–172.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • U. Bank
    • 1
  • D. Reinhold
    • 1
  • D. Kunz
    • 2
  • H. -U. Schulz
    • 3
  • Ch. Schneemilch
    • 4
  • W. Brandt
    • 4
  • S. Ansorge
    • 1
  1. 1.Division of Experimental Internal MedicineCenter of Internal MedicineGermany
  2. 2.Department of Clinical ChemistryOtto von Guericke University Magdeburg, Medical SchoolMagdeburgGermany
  3. 3.Department of SurgeryGermany
  4. 4.Department of Anesthesiology and Intensive Care MedicineGermany

Personalised recommendations