Advertisement

Inflammation

, Volume 18, Issue 3, pp 311–322 | Cite as

Participation of serum proteins in the inflammation-primed activation of macrophages

  • Nobuto Yamamoto
  • Norman P. Willett
  • Dwight D. Lindsay
Original Articles

Abstract

Inflamed lesions release degradation products of membrane lipids, lysophospholipids, and inflamed tumor tissues release alkylglycerols. Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to mice. In vitro treatment of mouse peritoneal cells (mixture of nonadherent and adherent cells) with lyso-Pc or DDG in fetal calf serum supplemented medium for 30 min, followed by 3-h cultivation of adherent cells (macrophages) alone, resulted in greatly enhanced Fc-receptor mediated phagocytic activity and Superoxide generating capacity of macrophages. The tumor lipid metabolite, DDG, is far more potent (400-fold) than lyso-Pc in terms of doses required for the maximal levels of macrophage activation. The inflammation-primed macrophage activation required a serum factor, vitamin D binding protein, as a precursor for the macrophage activating factor. Treatment of mouse peritoneal cells with 1μg lyso-Pc/ml or 50 ng DDG/ml in a serum-free 0.1 % egg albumin supplemented medium for 30 min, followed by 3-h cultivation of the treated peritoneal cells in a medium supplemented with a very small amount (0.0005–0.05%) of ammonium sulfate [20–50% saturated (NH4)2]SO4] precipitable protein fraction of FCS, resulted in greatly enhanced Superoxide generating capacity of macrophages. The ammonium sulfate precipitable fraction was found to contain vitamin D binding protein.

Keywords

Adherent Cell Ammonium Sulfate Inflame Lesion Phagocytic Activity Serum Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ngwenya, B. Z., andN. Yamamoto. 1985. Activation of peritoneal macrophages by lysophosphatidylcholine.Biochim. Biophys. Acta. 839:9–15.PubMedGoogle Scholar
  2. 2.
    Ngwenya, B. Z., andN. Yamamoto. 1986. Effects of inflammation products on immune systems: Lysophosphatidylcholine stimulates macrophages.Cancer Immunol. Immunother. 21:1074–1082.Google Scholar
  3. 3.
    Yamamoto, N., andB. Z. Ngwenya. 1987. Activation of macrophages by lysophospholipids and ether derivatives of neutral lipids and phospholipids.Cancer Res. 47:2008–2013.PubMedGoogle Scholar
  4. 4.
    Morton, D. L.,F. R. Eilber, E. C. Holmes, J. S. Hunt, A. S. Ketcham, M. J. Silberstein, andF. C. Sparks. 1974. BCG immunotherapy of malignant melanoma: Summary of a seven year experience.In Neoplasm Immunity: BCG Vaccination. A. Chicago Symposia. University of Illinois, Shori Press. Evanston, Illinois. 97–112.Google Scholar
  5. 5.
    Rapp, H. J. 1976. Immunotherapy of experimental cancer with BCG.In Tumor Virus Infections and Immunity. R. L. Crowell, H. Friedman, and J. E. Prier (editors). University Park Press, Baltimore. 261–264.Google Scholar
  6. 6.
    Zbar, B., andT. Tanaka, 1971. Immunotherapy of cancer: Regression of tumors after intralesional injection of livingMycobacterium bovis. Science 172:271–277.Google Scholar
  7. 7.
    Yamamoto, N., D. A. St. Claire, S. Homma, andB. Z. Ngwenya. 1988. Activation of mouse macrophages by alkylglycerols, inflammation products of cancerous tissues.Cancer Res. 48:6044–6049.PubMedGoogle Scholar
  8. 8.
    Snyder, F., andR. Wood. 1969. Alkyl-1-enyl-ethers of glycerol in lipids from normal and neoplastic human tissues.Cancer Res. 29:51–257.Google Scholar
  9. 9.
    Howard, B. V., H. P. Morris, andJ. M. Bailey. 1972. Ether-lipids, glycerol phosphate dehydrogenase and growth rate in tumors and cultured cells.Cancer Res. 32:1533–1538.PubMedGoogle Scholar
  10. 10.
    Ngwenya, B. Z., andN. Yamamoto. 1990. Contribution of lysophosphatidylcholine-treated nonadherent cells to mechanism of macrophage activation.Proc. Soc. Exp. Biol. Med. 198:118–124.Google Scholar
  11. 11.
    Homma, S., andN. Yamamoto. 1990. Activation process of macrophages after in vitro treatment of mouse lymphocytes with dodecylglycerol.Clin. Exp. Immunol. 78:307–313.Google Scholar
  12. 12.
    Homma, S., I. Millman, andN. Yamamoto. 1990. Serum factor for macrophage activation after in vitro dodecylglycerol treatment of mouse lymphocytes.Immunol. Cell. Biol. 68:135–142.Google Scholar
  13. 13.
    Yamamoto, N., S. Homma, andI. Millman. 1991. Identification of the serum factor required for in vitro activation of macrophages: Role of vitamin D3 binding protein (Group specific component, Gc) in lysophospholipid activation of mouse peritoneal macrophages.J. Immunol. 147:273–280.PubMedGoogle Scholar
  14. 14.
    Yamamoto, N., S. Homma, J. G. Haddad, andM. N. Kowalski. 1991. Vitamin D3 binding protein required forin vitro activation of macrophages after dodecylglyercol treatment of mouse peritoneal cells.Immunology 74:420–424.PubMedGoogle Scholar
  15. 15.
    Yamamoto, N., andS. Homma. 1991. Vitamin D3 binding protein (group-specific component, Gc) is a precursor for the macrophage activating signal factor from lysophosphatidylcholine-treated lymphocytes.Proc. Natl. Acad. Sci. U.S.A. 88:8539–8543.PubMedGoogle Scholar
  16. 16.
    Kawai, N., andMatsumoto, H. 1984. Vitamin D-binding protein levels in liver cirrhosis, chronic hepatitis and rheumatoid arthritis.Jpn. J. Legal Med. 38:797–803.Google Scholar
  17. 17.
    Cohn, Z. A., andB. Benson. 1965. The differentiation of mononuclear phagocytes, morphology, cytochemistry, and biochemistry.J. Exp. Med. 121:153–169.PubMedGoogle Scholar
  18. 18.
    Bianco, C., F. M. Griffin, andS. C. Silverstein. 1975. Studies of the macrophage complement receptors. Alternative of receptor function upon macrophage activation.J. Exp. Med. 141:1278–1290.PubMedGoogle Scholar
  19. 19.
    Pick, E., andD. Mizel. 1981. Rapid microassays for the measurement of Superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader.J. Immunol. Methods 46:211–226.PubMedGoogle Scholar
  20. 20.
    Estensen, R. D., J. G. White, andB. Holmes. 1974. Specific degranulation of human polymorphonuclear leukocytes.Nature 248:347–348.PubMedGoogle Scholar
  21. 21.
    Babior, B. M., andH. J. Cohen. 1981. Measurement of neutrophil function: phagocytosis, degranulation, the respiratory burst and bacterial killing.In Methods in Hematology: Leukocyte Function. M. J. Cline (editor). Churchill Livingstone, New York. 1–38.Google Scholar
  22. 22.
    Peters, T. 1975. Serum albumin.In The Plasma Proteins, Vol. I. Academic Press, New York. 133–181.Google Scholar
  23. 23.
    Nakagawa, M., andT. Nishida. 1973. Effect of lysolecithin and albumin on lecithin-cholesterol acyltransferase activity in human plasma.J. Biochem. 74:1263–1266.PubMedGoogle Scholar
  24. 24.
    Klibansky, C., andA. De Varies. 1963. Quantitative study of erythrocyte-lysolecithin interaction.Biochim. Biophys. Acta 70:176–187.PubMedGoogle Scholar
  25. 25.
    Weber, N. 1985. Metabolism of orally administered rac-1-O-[l′-14C]dodecylglycerol and nutritional effects of dietary rac-1-O-dodecylglycerol in mice.J. Lipid Res. 26:1412–1420.PubMedGoogle Scholar
  26. 26.
    Bromberg, Y., andE. Pick. 1984. Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell free system derived from macrophages.Cell. Immunol. 88:213–221.PubMedGoogle Scholar
  27. 27.
    Bromberg, Y., andE. Pick. 1985. Activation of NADPH-dependent Superoxide production in a cell free system by sodium dodecyl sulfate.J. Biol. Chem. 260:13539–13545.PubMedGoogle Scholar
  28. 28.
    Pick, E., Y. Bromberg, S. Shpungin, andR. Godba. 1987. Activation of the Superoxide forming NADPH oxidase in cell-free system by sodium dodecyl sulfate.J. Biol. Chem. 262:16476–16483.PubMedGoogle Scholar
  29. 29.
    Copperhaver, D. H., N. P. Sollene, andB. H. Bowman. 1983. Posttranslational heterogeneity of the human vitamin D-binding protein (group-specific component).Arch. Biochem. Biophys. 226:218–223.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Nobuto Yamamoto
    • 1
    • 2
  • Norman P. Willett
    • 3
  • Dwight D. Lindsay
    • 3
  1. 1.Department of BiochemistryUSA
  2. 2.Fels Institute for Cancer Research and Molecular BiologyUSA
  3. 3.Department of Microbiology and ImmunologyTemple University School of MedicinePhiladelphia

Personalised recommendations