Journal of Computer-Aided Molecular Design

, Volume 2, Issue 4, pp 259–266 | Cite as

Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus

  • Terry P. Lybrand
  • J. Andrew McCammon
Research Papers

Summary

Molecular dynamics simulations have been used to study the free energy of binding of an antiviral agent to the human rhinovirus HRV-14 and to a mutant in which a valine residue in the antiviral binding pocket is replaced by leucine. The simulations predict that the antiviral should bind to the two viruses with similar affinity, in apparent disagreement with experimental results. Possible origins of this discrepancy are outlined. Of particular importance is the apparent need for methods to systematically sample all significant conformations of the leucine side chain.

Key words

Molecular dynamics Thermodynamic cycle-perturbation method Binding free energy Human rhinovirus Antiviral agent binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCammon, J.A., Science, 238 (1987) 486–491.PubMedGoogle Scholar
  2. 2.
    McCammon, J.A. and Harvey, S.C. ‘Dynamics of Proteins and Nucleic Acids’, Cambridge University Press, Cambridge, 1987.Google Scholar
  3. 3.
    Smith, T.J., Kremer, M.J., Luo, M., Vriend, G., Arnold, E., Kamer, G., Rossmann, M., McKinley, M.A., Diana, G.D., Otto, M.J., Science, 233 (1986) 1286–1293.PubMedGoogle Scholar
  4. 4.
    Lybrand, T.P., McCammon, J.A., and Wipff, G., Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 833–835.PubMedGoogle Scholar
  5. 5.
    Lybrand, T.P., Lau, W.F., McCammon, J.A., and Pettitt, B.M., In D. Oxender (Ed.), Protein Structure, Folding, and Design 2, Alan R. Liss, New York, 1987, p. 227–233.Google Scholar
  6. 6.
    Wong, C.F. and McCammon, J.A., J. Am. Chem. Soc., 108 (1986) 3830–3832.Google Scholar
  7. 7.
    Rao, S.N., Singh, U.C., Bash, P.A., and Kollman, P.A., Nature, 328 (1987) 551–554.PubMedGoogle Scholar
  8. 8.
    Weiner, S.J., Kollmanm, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765–784.Google Scholar
  9. 9.
    Berendsen, H.J.C., Postman, J.P.M., and van Gunsteren W.F., In Pullman, B. (Ed.), Intermolecular Forces, Reidel, Dordrecht, 1981, p. 331–342.Google Scholar
  10. 10.
    Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129–145.Google Scholar
  11. 11.
    Singh, U.C., Weiner, P.K., Caldwell, J., and Kollman, P.A., AMBER 3.0 UCSF, 1986.Google Scholar
  12. 12.
    Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C., J. Comput. Phys., 23 (1977) 327–341.Google Scholar
  13. 13.
    Wood, D.W., In Franks F. (Ed.) Water: A comprehensive Treatise, Vol. 6, Plenum, New York, 1979.Google Scholar
  14. 14.
    Gallo, L., Huang, C., Ferrin, T. and Langridge, R., MIDAS USCF, 1983.Google Scholar
  15. 15.
    Dempsey, S., MMS UCSD, 1985.Google Scholar
  16. 16.
    Badger, J., Minor, I., Kremer, M.J., Oliveira, M.A., Smith, T.J., Griffith, J.P., Guerin, D.M.A., Krishnaswamy, S., Luo, M., Rossmann, M.G., McKinlay, M.A., Diana, G.D., Dutko, F.J., Fancher, M., Rueckert, R.R. and Heinz, B.A., Proc. Natl. Acad. Sci. U.S.A., 85, 3304–3308.Google Scholar
  17. 17.
    Lau, W.F., Pettitt, B.M. and Lybrand, T.P., Mol. Simul., in press.Google Scholar
  18. 18.
    Lau, W.F. and Pettitt, B.M., to be published.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1989

Authors and Affiliations

  • Terry P. Lybrand
    • 1
  • J. Andrew McCammon
    • 2
  1. 1.Department of Medicinal Chemistry and Supercomputer InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations