Advertisement

Intrinsic and extrinsic determinants of neuronal development: Relation to infantile autism

  • Roland D. Ciaranello
  • Scott R. VandenBerg
  • Thomas F. Anders
Article

Abstract

This paper attempts to view the autistic syndrome in the context of a disorder of brain development. The authors review some of the known or suspected causes of the autistic syndrome: maternal rubella, metabolic diseases, and heredity. Some basic principles of cellular neuroanatomy and chemical neurotransmission are sketched. The stages of human brain development from neurulation through histogenesis, cell migration, and elaboration of dendritic trees and axonal projections are described. The authors conclude that there are a limited number of developmental loci that could be disrupted and lead to the autistic syndrome, and that these most probably occur in the end stages of neuronal development, after the migrating neurons have reached their final place in the brain and have begun to elaborate communicative processes. Finally, the authors speculate on how neurochemical disturbances might alter end stage neuronal differentiation leading to the pathology of infantile autism.

Keywords

Cell Migration Human Brain Brain Development Neuronal Differentiation Rubella 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggerwal, A. S., & Hendelman, W. J. The purkinje neuron: II. Electron microscopic analysis of the mature purkinje neuron in organotypic culture. Journal of Comparative Neurology, 1980,193, 1081–1096.PubMedGoogle Scholar
  2. Banker, G. A. Trophic interactions between astroglial cells and hippocampal neurons in culture.Science, 1980,209, 809–810.PubMedGoogle Scholar
  3. Berry, M., Bradley, P., & Borges, S. Environmental and genetic determinants of connectivity in the central nervous system. An approach through dendritic field analysis. In M. A. Corner, R. E. Baker, N. E. van de Poll, D. F. Swaab, & H. B. M. Uyling (eds.),Maturation of the nervous system, Progress in Brain Research 48: 133–146, Amsterdam: Elsevier/North Holland, 1978.Google Scholar
  4. Berry, M., McConnell, P., & Sievers, J. Dendritic growth and the control of neuronal form. In R. K. Hunt (Ed.),Current topics in developmental biology (Vol. 15). Neural development, (Part I) Emergence of specificity in neural histogenesis. New York: Academic Press, 1980.Google Scholar
  5. Black, I. B., Coughlin, M. D., & Cochard,m P. Factors regulating neuronal differentiation. In J. A. Ferrendelli (Ed.),Aspects of developmental neurobiology. Bethesda 1979, Society for Neuroscience, pp. 184–208.Google Scholar
  6. Blakemore, C., Garey, L. J., & Vital-Durand, F. Developmental plasticity in the monkey visual system. In E. Meisami & M. A. B. Brazier (Eds.),Neural growth and differentiation. New York: Raven Press, 1979.Google Scholar
  7. Boehme, R. E., & Ciaranello, R. D. Dopamine receptor binding in inbred mice: Strain differences in mesolimbic and nigrostriatal dopamine binding sites.Proceedings of the National Academy of Sciences of the Unisted States of America, 1981,78, 3255–3259.Google Scholar
  8. Bradley, P., & Berry, M. The effects of reduced climbing and parallel fibre input in purkinje cell dendritic growth.Brain Research, 1976,109, 133–151.PubMedGoogle Scholar
  9. Bray, D. Branching patterns of individual sympathetic neurons in culture.Journal of Cell Biology, 1973,56, 702–712.PubMedGoogle Scholar
  10. Bunge, M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in cultures.Journal of Cell Biology, 1973,56, 713–735.PubMedGoogle Scholar
  11. Chalazmitis, A., & Fischbach, G. D. Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture.Developmental Biology, 1980,78, 173–183.PubMedGoogle Scholar
  12. Changeux, J-P., & Danchin, A. The selective stabilization of developing synapses as a mechanism for the specification of neuronal networks.Nature, 1976,264, 705–712.PubMedGoogle Scholar
  13. Changeux, J-P., & Mikoshiba, K. Genetic and “epigenetic” factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. In M. A. Corner, R. E. Baker, N. E. van de Poll, D. F. Swaab, & H. B. M. Uylings (Eds),Maturation of the nervous system, Progress in Brain Research, 48, 357–372. Amsterdam: Elsevier/North Holland, 1978.Google Scholar
  14. Chess, S., Korn, S. J., & Fernandez, P. B.Psychiatric disorders of children with congential rubella. New York: Brunner/Mazel, 1971.Google Scholar
  15. Ciaranello, R. D., & Axelrod, J. Genetically controlled alteration in the rate of degradation of phenylethanolamine N-methyltransferase.Journal of Biological Chemistry, 1973,248, 5616–5623.PubMedGoogle Scholar
  16. Ciaranello, R. D., Hoffman, H., Shire, J. G. M., & Axelrod, J. Genetic regulation of the catecholamine biosynthetic enzymes. II. Inheritance of tyrosine hydroxylase, dopamine-β-hydroxylase and phenylethanolamine N-methyltransferase.Journal of Biological Chemistry, 1974,249, 4528–4534.PubMedGoogle Scholar
  17. Ciaranello, R. D., & Patrick, R. I. Catecholamine neuroregulators. In J. D. Barchas, P. A. Berger, R. D. Ciaranello, G. R. Elliott (Eds.),Psychopharmacology: From theory to practice. New York: Oxford University Press, 1977, p. 17.Google Scholar
  18. Cone, C. D., Jr., & Cone, C. M. Evidence of normal mitosis with complete cytokinesis in central nervous system neurons during sustained depolarization with ouabain.Experimental Neurology,60, 41–55.Google Scholar
  19. Cooper, J. R. Bloom, F. E., & Roth, R. H.The biochemical basis of neuropharmacology (3rd ed.). New York: Oxford University Press, 1978.Google Scholar
  20. Cotman, C. W., & Banker, G. A. The making of a synapse. In E. Ehrenpreis, I. J. Kopin (eds.),Reviews of neuroscience (Vol. 1). New York: Raven Press, 1974.Google Scholar
  21. Cowan, W. M., Stanfield, B. B., & Kishi, K. The development of the dentate gyrus. In R. K. Hunt (Ed.),Current topics in developmental biology (Vol. 15). (Neural development, Part I) Emergence of specificity in neural histogenesis. New York: Academic Press, 1980.Google Scholar
  22. Coyle, J., Johnston, M. V., & Grzanna, R. Development of the central noradrenergic neurons in the rat brain. In E. Usdin, I. J. Kopin, & J. D. Barchas (Eds.),Catecholamines: Basic and clinical frontiers, (Vol. 1). N.Y.: Pergamon Press, 1979.Google Scholar
  23. Crain, S. M., & Peterson, E. R. Development of neural connections in culture.Annals of the New York Academy of Sciences, 1974,228, 6–34.PubMedGoogle Scholar
  24. Damasio, A. R., & Maurer, R. G. A neurological model for childhood autism.Archives of Neurology, 1978,35, 777–786.PubMedGoogle Scholar
  25. DeLong, G. R. A neuropsychologic interpretation of an infantile autism. In M. Rutter, E. Schopler (Eds.),Autism: A reappraisal of concepts and treatment. New York: Plenum Press, 1978, Pp. 207–218.Google Scholar
  26. Dennis, M. J. Development of the neuromuscular junction: Inductive interactions between cells.Annual Review of Neuroscience, 1981,4, 43–68.PubMedGoogle Scholar
  27. Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, D.C.: American Psychiatric Association, 1980.Google Scholar
  28. Folstein, S., & Rutter, M. A twin study of individuals with infantile autism. In M. Rutter, E. Schopler, (Eds.),Autism: A reappraisal of concepts and treatment. New York: Plenum Press, 1978, Pp. 219–242.Google Scholar
  29. Friede, R. L.Developmental neuropathology. New York: Springer-Verlag, 1975, Pp. 271–277; 230–252.Google Scholar
  30. Fujita, S. Analysis of neuron differentiation in the central nervous system by tritiated thymidine autoradiography.Journal of Comparative Neurology, 1964,122, 311–328.PubMedGoogle Scholar
  31. Gall, C., Rose, G., & Lynch, G. Proliferative and migratory activity of glial cells in partially deafferented hippocampus.Journal of Comparative Neurology, 1979,183, 539–550.PubMedGoogle Scholar
  32. Garber, B. B., Powell, G. M., Hoffmann, P. C., & Heller, A. Histogenesis of developing dopamine neurons in cell aggregates “in vitro.” in E. Usdin, I. J. Kopin, & J. D. Barchas (Eds.),Catecholamine: Basic and clinical frontiers, (Vol. 1) New York: Pergamon Press, 1979.Google Scholar
  33. Giacobini, E. Synaptogenesis: Chemistry, structure, or function? Which comes first? In E. Meisami, M. A. B. Brazier (Eds.),Neural growth and differentiation. New York: Raven Press, 1979.Google Scholar
  34. Gottlieb, D. I., & Glaser, L. Cellular recognition during neural development.Annual Review of Neuroscience, 1980,3, 303–318.PubMedGoogle Scholar
  35. Graziadei, G. A., & Graziadei, P. P. C. Studies on neuronal plasticity and regeneration in the olfactory system: Morphologic and functional characteristics of the olfactory sensory neuron. In E. Meisami & M. A. B. Brazier (Eds.),Neural growth and differentiation. New York: Raven Press, 1979.Google Scholar
  36. Greengard, P.Cyclic nucleotides, phosphorylated proteins and neuronal function-Distinguished Lecture Series of the Society of General Physiologists (Vol. 1). New York: Raven Press, 1978.Google Scholar
  37. Hamon, M., Nelson, D. L. Herbet, A., & Glowinski, J. Multiple receptors for serotonin in the rat brain. In G. Pepeu, M. J. Kuhar, & S. J. Enna (Eds.),Receptors for neurotransmitters and peptide hormones. New York: Raven Press, 1980.Google Scholar
  38. Hanson, D. R., & Gottesman, I. I. The genetics, if any, of infantile autism and childhood schizophrenia.Journal of Autism and Childhood Schizophrenia, 1976,6, 209–234.PubMedGoogle Scholar
  39. Hendelman, W. J., & Aggerwal, A. S. The purkinje neuron. I. A golgi study of its development in the mouse and in culture.Journal of Comparative Neurology, 1980,193, 1063–1079.PubMedGoogle Scholar
  40. Henrickson, C. K., & Vaughn, J. E. Fine structural relationship between neurites and radial glial processes in developing mouse spinal cord.Journal of Neurocytology, 1974,3, 659–675.PubMedGoogle Scholar
  41. Hertz, L., & Franck, G. Effect of increased potassium concentrations on potassium fluxes in brain slices and in glial cells. In E. Schoffeniels, G. Franck, L. Hertz, & D. Tower (Eds.),Dynamic properties of glial cells. New York: Pergamon Press, 1978.Google Scholar
  42. Hinds, J. W. Early neuron differentiation in the CNS: A comparison of several regions studied with serial thin sections. In E. Meisami & M. A. B. Brazier (Eds.),Neural growth and differentiation. New York: Raven Press, 1979.Google Scholar
  43. Huttenlocher, P. R. Dendritic development in neocortex of child with mental defect and infantile spasms.Neurology, 1974,24, 203–210.PubMedGoogle Scholar
  44. Jacobson, M.Developmental neurobiology, (2nd ed.) New York: Plenum Press, 1978, Pp. 5–10; 76–88.Google Scholar
  45. Jaffe, L. F., & Stern, C. D. Strong electrical currents leave the primitive streak of chick embryos.Science, 1979,206, 569–571.PubMedGoogle Scholar
  46. Johnston, R. N., & Wessells, N. K. Regulation of the elongating nerve fiber. In K. Hunt (Ed.),Current topics in developmental biology (Vol. 16). (Neural Development, Part II) Neural development in model system. New York: Academic Press, 1980.Google Scholar
  47. Kanner, L. Autistic disturbances of affective contact.Nervous Child, 1943,2, 217–250.Google Scholar
  48. Karfunkei, P. The mechanism of neural tube formation,International Review of Cytology 1974,38, 245–271.PubMedGoogle Scholar
  49. Kasarskis, E. J., Karpiak, S. E., Rapport, M. M., You, R. K., & Bass, N. H. Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal adminstration of antibodies to ganglioside.Developmental Brain Research, 1981,1, 25–35.Google Scholar
  50. Kerr, F. W. L. Structural and functional evidence of plasticity in the central nervous system.Experimental Neurology, 1975,48, 16–31.PubMedGoogle Scholar
  51. Kupfermann, I. Modulatory actions of neurotransmitters.Annual Review of Neuroscience, 1979,2, 447–465.PubMedGoogle Scholar
  52. Landis, D. M. D., & Sidman, R. L. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice.Journal of Comparative Neurology, 1978,179, 831–863.PubMedGoogle Scholar
  53. Langman, J., Guerrant, R. L., & Freeman, B. G. Behavior of neuroepithelial cells during closure of the neural tube.Journal of Comparative Neurology, 1966,127, 399–412.PubMedGoogle Scholar
  54. Lauder, J. M., & Bloom, F. E. Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. I. Cell differentiation.Journal of Comparative Neurology, 1974,155, 469–482.PubMedGoogle Scholar
  55. Lemire, R. J., Loeser, J. D., Leech, R. W., & Alvord, E. C., Jr.Normal and abnormal development of the human nervous system. New York: Harper & Row, 1975.Google Scholar
  56. Letourneau, P. C., & Wessells, N. K. Migratory cell locomotion versus nerve axon elongation. Differences based on the effects of lanthanum ion.Journal of Cell Biology, 1974,61, 56–69.Google Scholar
  57. Levitt, P., & Rakic, P. Immunopexiodase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.Journal of Comparative Neurology, 1980,193, 815–840.PubMedGoogle Scholar
  58. Luduena, M. A., & Wessells, N. K. Cell locomotion, nerve elongation, and microfilaments.Developmental Biology, 1973,30, 427–440.PubMedGoogle Scholar
  59. Lui, C. N., & Chambers, W. W. Intraspinal sprouting of dorsal axons.Archives of Neurology and Psychiatry, 1958,79, 46–61.Google Scholar
  60. Mallet, J. Biochemistry and immunology of neurological mutants in the mouse. In R. K. Hunt (Ed.),Current topics in developmental biology (Vol. 15).(Part I) Emergence of specificity in neural histogenesis. New York: Academic Press, 1980.Google Scholar
  61. Marin-Padilla, M. Abnormal neuronal differentiation (functional maturation) in mental retardation. In D. Bergsma (Ed.),Morphogenesis and malformation of face and brain. New York: Alan R. Liss, 1975.Google Scholar
  62. Monard, D., Solomon, F., Rentsch, M., & Gysin, R. Glia-induced morphological differentiation in neuroblastoma cells.PNAS, 1973,70, 1894–1897.PubMedGoogle Scholar
  63. Moore, K. L.The developing human, clinically oriented embryology (1st ed.). Philadelphia: W. B. Saunders, 1973.Google Scholar
  64. Moore, R. Y., & Bloom, F. E. Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems.Annual Review of Neuroscience, 1979,2, 113–168.PubMedGoogle Scholar
  65. Nakai, J., & Kawasaki, Y. Studies in the mechanism determining the course of nerve fibers in culture. I. The reaction of the growth cone to various obstructions.Zeitschrift für Zellforschung und Mikroskopische Anatomie, 1954,51, 108–122.Google Scholar
  66. Matthysse, S., Toward neurobiological understanding of autism.Proceedings of the International Conference of Autism, 1981. Washington, D.C.: NSAC, The National Society for Children and Adults with Autism, in press.Google Scholar
  67. Nelson, D. L., Herbet, A., Adrien, J., Bockaert, J., & Hamon, M. Serotonin-sensitive adenylate cyclase and [4H]serotonin binding sites in the CNS of the rat. I. Kinetic parameters and pharmacologic properties.Biochemical Pharmacology, 1980,29, 2445–2453.PubMedGoogle Scholar
  68. Nelson, D. L., Herbet, A., Enjalbert, A., Bockaert, J., & Hamon, M. Serotonin-sensitive adenylate cyclase and [4H]serotonin bindings sites in the CNS OF THE RAT. I. Kinetic parameters and pharmacologic properties.Biochemical Pharmacology, 1980,29, 2445–2453.PubMedGoogle Scholar
  69. Ornitz, E. M., & Ritvo, E. R. The syndrome of autism: A critical review.American Journal of Psychiatry, 1976,133, 609–621.PubMedGoogle Scholar
  70. Paldino, A. M., & Purpura, D. P. Quantitative analysis of the spatial distribution of axonal and dendritic terminals of hippocampal pyramidal neurons in immature human brain.Experimental Neurology, 1979,64, 606–619.Google Scholar
  71. Paldino, A. M., & Purpura, D. P. Branching patterns of hippocampal neurons of human fetus during dendritic differentiation.Experimental Neurology, 1979,64, 620–631.PubMedGoogle Scholar
  72. Paldino, A.M., & Purpura, D. D. Golgi study of hippocampal pyramids in two preterm twin fetuses: A computerized morphometric analysis of branching characteristics. InAbstracts, Vol. 6, 10th Annual Meeting. Society for Neuroscience, 1980.Google Scholar
  73. Parnavelas, J. G. Influence of stimulation on cortical development. In M. A. Corner, R. E. Baker, N. E. van de Poll, D. F. Swaab, & H. B. M. Uylings (Eds.),Maturation of the nervous system, Progress in Brain Research 48: 247–259. Amsterdam: North Holland, 1978.Google Scholar
  74. Pfenninger, K. H. Mechanism of membrane expansion in the growing neuron. In:Abstracts, Vol. 6, 10th Annual Meeting. Society for Neuroscience, 1980.Google Scholar
  75. Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., & Massey, J. F. Dynamic activities of nervous tissue in vitro. In H. Hyden (Ed.),The neuron. Amsterdam: Elsevier/North Holland, 1967, Pp. 119–178.Google Scholar
  76. Privat, A., Marson, A. M., & Drain, M. J. In vitro models of neural growth and differentiation. In M. Cuenod, G. W. Kreutzberg, & F. E. Bloom (Eds.),Development and chemical specificity of neurons, Progress in Brain Research, 51: 357–373. Amsterdam: Elsevier/North Holland, 1979.Google Scholar
  77. Purpura, D. P. Ectopic dendritic growth in mature pyramidal neurons in human ganglioside storage disease.Nature, 1978,276, 520–521.PubMedGoogle Scholar
  78. Purpura, D. P. Pathology of cortical neurons in metabolic and unclassified amentias. In R. Katzman (Ed.),Congential and acquired cognitive disorders, New York: Raven Press, 1979.Google Scholar
  79. Purpura, D. P., Suzuki, K., Rapin, I., & Wurzelmann, S. Dendritic varicosities and microtubule disarry in human cortical neurons in developmental failure. InAbstracts, Vol. 6, 10th Annual Meeting. Society for Neuroscience, 1980.Google Scholar
  80. Rakic, P. Cell migration and neuronal ectopias in the brain. In D. Bergsma (Ed.),Morphogenesis and malformation of face and brain. New York: Alan R. Liss, (1975).Google Scholar
  81. Rakic, P. Synaptic specificity in the cerebellar cortex: Study of anomalous circuits induced by single gene mutations in mice. InCold Spring Harbor symposia on quantative biology (Vol. 40),The synapse. Cold Spring Harbor Laboratory, 1976.Google Scholar
  82. Rakic, P., & Sidman, R. L. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice.Journal of Comparative Neurology, 1973,152, 103–132.PubMedGoogle Scholar
  83. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations In R. F. Reiss (Ed.),Neural theory and modelling. Palo Alto: Stanford University Press, 1964.Google Scholar
  84. Rapport, M. M., Karpiak, S. E., & Mahadik, S. P. Perturbation of CNS function by antibodies to gangliosides. Speculations on biological roles of ganglioside receptors. In L. Svennerholm, P. Mandel, H. Dreyfus, P-F. Urban (Eds.),Structure and function of gangliosides, Advances in Experimental Medical Biology, 125, New York: Plenum, 1980.Google Scholar
  85. Reeber, A., Vincendon, G., & Zanetta, J. P. Transient concanavilin A-binding glycoproteins of the parallel fibres of the developing rat cerebellum: Evidence for the destruction of their glycans.Journal of Neurochemistry, 1980,35, 1273–1277.PubMedGoogle Scholar
  86. Ravel, J-P., & Brown, S. S. Cell junctions in development, with particular reference to the neural tube. InCold Spring Harbor symposia on quantitative biology (Vol. 40)The synapse. Cold Spring Harbor Laboratory, 1976.Google Scholar
  87. Reynolds, C. P., & Perez-Polo, J. R. Human neuroblastoma: glial induced morphological differentiation.Neuroscience Letters, 1975,1, 91–97.Google Scholar
  88. Rutter M. The development of infantile autism.Psychological Medicine, 1974,4, 147–163.PubMedGoogle Scholar
  89. Sauer, F. C. Mitosis in the neural tube.Journal of Comparative Neurology, 1935,62, 377–405.Google Scholar
  90. Sauer, M. E., & Walker, B. E. Radiographic study of interkinetic nuclear migration in the neural tube.Proceedings of the Society for Experimental Biology and Medicine, 1959,101, 557–560.PubMedGoogle Scholar
  91. Saxen, L. Neural induction: Past, present, and future. In K. R. Hunt (Ed.),Current topics in developmental biology (Vol. 15).(Part I) Emergence of specificity in neural histogenesis. New York: Academic Press, 1980.Google Scholar
  92. Schain, R., & Freedman, D. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children.Journal of Pediatrics, 1961,58, 315–320.PubMedGoogle Scholar
  93. Schlumpf, M., Shoemaker, W. J., & Bloom, F. E. Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers.Journal of Comparative Neurology, 1980,192, 361–376.PubMedGoogle Scholar
  94. Schneider, G. E. Mechanism of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters.Brain Behavior and Evolution, 1970,3, 295–323.Google Scholar
  95. Schwartz, J. H. Axonal transport: Components, mechanisms, and specificity.Annual Review of Neuroscience, 1979,2, 467–504.PubMedGoogle Scholar
  96. Seress, L. Development and structure of the radial glia in the postnatal rat brain.Anatomia, Histologia, Embryologia, 1980,160, 213–226.Google Scholar
  97. Shepherd, G. M.The synoptic organization of the brain (2nd ed.). New York: Oxford University Press, 1979.Google Scholar
  98. Sidman, R. L., Green, M. C., & Appel, S. H.Catalog of the neurological mutants of mouse. Cambridge: Harvard University Press, 1965.Google Scholar
  99. Sidman, R. L., & Wessels, N. K. Control of direction of growth during the elongation of neurites.Experimental Neurology, 1975,48, (Part 2) 237–251.PubMedGoogle Scholar
  100. Sievers, J., Klemm, H. P., Jenner, S., Baumgarten, H. G., & Berry, M. Neuronal and extraneuronal effects of intracisternally administered 6-Hydroxydopamine on the developing rat brain.Journal of Neurochemistry, 1980,34, 765–771.PubMedGoogle Scholar
  101. Skoff, R. P., & Hamburger, V. Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord.Journal of Comparative Neurology, 1974,153, 107–148.PubMedGoogle Scholar
  102. Sotelo, C. Purkinje cell ontogeny: Formation and maintenance of spines. In M. A. Corner, R. E. Baker, N. E. van de Poll, D. F. Swaab, & H. B. M. Uylings (Eds.),Maturation of the nervous system, Progress in Brain Research, 48, 149–168. Amsterdam: Elsevier/North Holland, 1978.Google Scholar
  103. Sotelo, C. Synaptic stabilization: Comparative studies on the cerebellum of staggerer and nervous mutant mice. In E. Meisami & M. A. B. Brazier (Eds.),Neural growth and differentiation, New York: Raven Press, 1979.Google Scholar
  104. Spano, P. F., Memo, M., Stefanini, E., Fresia, P., & Trabucchi, M. Detection of multiple receptors for dopamine. In G. Pepeu, M. J. Kuhar, & S. J. Enna (Eds.),Receptors for neurotransmitters and peptide hormones. New York: Raven Press, 1980.Google Scholar
  105. Squires, R. F., Klepner, C. A., & Benson, D. I. Multiple benzodiazepine receptor complexes: Some benzodiazepine recognition sites are coupled to GABA receptors and ionophores. In G. Pepeu, M. J. Kuhar, & S. J. Enna (Eds.),Receptors for neurotransmitters and peptide hormones. New York: Raven Press, 1980.Google Scholar
  106. Stent, G. S. Strength and weakness of the genetic approach to the development of the nervous system.Annual Review of Neuroscience, 1981,4, 163–194.PubMedGoogle Scholar
  107. Stevens, C. F. The synapse: A summary. InCold Spring Harbor symposia on quantitative biology, (Vol. 40),The synapse. Cold Spring Harbor Laboratory, 1975.Google Scholar
  108. Truey, R. C. & Carpenter, M. B.Human neuroanatomy (6th ed.). Baltimore: Williams & Wilkins, 1969.Google Scholar
  109. Tsukahara, N. Synaptic plasticity in the mammalian central nervous system.Annual Review of Neuroscience, 1981,4, 351–379.PubMedGoogle Scholar
  110. Vaughn, J. E., Henrickson, C. K., & Grieshaber, J. A. A quantative study on synapses on motor neuron dendritic growth cones in developing mouse spinal cord.Journal of Cell Biology, 1974,60, 664–672.PubMedGoogle Scholar
  111. Walkley, S. U., Wurzelmann, S., & Purpura, D. P. Ultrastructure of neurites and meganeurites of cortical pyramidal neurons in feline gangliosidosis as revealed by the combined golgi-EM technique.Brain Research, 1981,211, 393–398.PubMedGoogle Scholar
  112. Yamada, K. M., Spooner, B. S., & Wessells, N. K. Ultrastructure and function of growth cones and axons in cultured nerve cells.Journal of Cell Biology, 1971,49, 614–635.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Roland D. Ciaranello
    • 1
  • Scott R. VandenBerg
    • 1
  • Thomas F. Anders
    • 1
  1. 1.Laboratory of Developmental Neurochemistry, Division of Child Psychiatry and Child Development, Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanford

Personalised recommendations