Describing symmetrical structures in logic

  • P. A. Strooper
  • M. H. van Emden


We present a simple but general method for the description in logic of discrete geometric structures based on the symmetry group of the structure. As a first step, we write a logic program that defines the structure with a small set of base points and generators for the symmetry group of the structure. We modify this program so that, when it is executed as a program inProlog orClp(ℛ), it enumerates the points of the structure. This method allows compact descriptions of highly symmetrical, yet elaborate structures such as geodesic spheres.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.A. Armstrong,Groups and Symmetry (Springer, Berlin, 1988).Google Scholar
  2. [2]
    J.C. Bohlen, Trigonometric relationships for geodesic domes, Information Report VP-X-121, Department of the Environment, Canadian Forestry Service (1974).Google Scholar
  3. [3]
    R.B. Fuller, Building construction, U.S. Patent 2,682,235 (June 29, 1954).Google Scholar
  4. [4]
    J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap, The CLP(ℛ) language and system, Technical Report CMU-CS-90-181, Carnegie Mellon University (1990).Google Scholar
  5. [5]
    D.E. Knuth and P.B. Bendix, Simple word problems in universal algebras, in:Computational Problems in Abstract Algebra, ed. J. Leech (Pergamon Press, 1970) pp. 263–297.Google Scholar
  6. [6]
    J.W. Lloyd,Foundations of Logic Programming, 2nd ed. (Springer, Berlin, 1987).Google Scholar
  7. [7]
    J. McHale,R. Buckminster Fuller (George Braziller, 1962).Google Scholar
  8. [8]
    R. Reiter, A logic for default reasoning, Artificial Intelligence 13(1980)81–132.Google Scholar
  9. [9]
    P.A. Strooper, M. Stylianou and B. Tabarrok, Prolog for finite-element model definition,Proc. 1992 ASME International Computers in Engineering Conference, pp. 133–140.Google Scholar
  10. [10]
    B. Tabarrok, WISDOM Reference Manual, version 4.0, Department of Mechanical Engineering, University of Victoria, Victoria, BC (1990).Google Scholar
  11. [11]
    O.C. Zienkiewicz and R.L. Taylor,The Finite Element Method, 4th ed. (McGraw-Hill, 1988).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • P. A. Strooper
    • 1
  • M. H. van Emden
    • 1
  1. 1.Computer Science DepartmentUniversity of VictoriaVictoriaCanada
  2. 2.Department of Computer ScienceUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations