Journal of bioenergetics

, Volume 1, Issue 2, pp 147–180 | Cite as

Conformational basis of energy transduction in membrane systems VIII. Configurational changes of mitochondria

In Situ andIn Vitro
  • Charles H. Williams
  • William J. Vail
  • Robert A. Harris
  • Monya Caldwell
  • David E. Green
  • Enrique Valdivia
Article

Abstract

A method has been devised for the study of configurational changes in mitochondriain situ during the transition from nonenergized to energized conditions. The method depends upon the following component features: (a) subdivision of the tissue into finely diced sections; (b) the use of a modified Krebs-Ringer phosphate solution as the suspending medium; (c) aerobic conditions as the tactic for imposing the energized state; (d) anaerobic conditions or the presence of uncoupler under aerobic conditions as the tactic for imposing the nonenergized state; and (e) rapid fixation of the diced sections by addition of a mixture of formaldehyde and glutaraldehyde at a controlled temperature. Regardless of the tissue of source (heart, liver, skeletal muscle, retina, kidney) or the species (beef, rat, canary), all mitochondria show unambiguous configurational changes during the transition from nonenergized to energized conditions. The present study has revealed various optional features of the configurational states. Thus, there are two nonenergized configurations of the crista—orthodox and aggregated. The osmotic pressure of the suspending medium determines which nonenergized configuration will be observed. There are at least two variant forms of the energized-twisted configuration—tubular and zigzag. Again the osmotic pressure of the medium is an important factor in determining the form of the crista in the energized-twisted configuration. Mitochondria, such as those of heart muscle with relatively little matrix protein, show the clearest and most regular configurational changes, whereas mitochondria, such as those of liver with an abundance of matrix protein, show a more complex and less regular pattern of configurational change. From this comparative study of mitochondriain situ, it can be concluded that no exceptions have been found to the generalization that changes in configurational state of the cristae accompany changes in the energy state; this exact correlation provides additional support for the hypothesis of the conformational basis of energy transduction in the mitochondrion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Penniston, R. A. Harris, J. Asai, and D. E. Green,Proc. Natn. Acad. Sci. U.S.A.,59, (1968) 624.Google Scholar
  2. 2.
    R. A. Harris, J. T. Penniston, J. Asai, and D. E. Green,Proc. Natn. Acad. Sci. U.S.A.,59 (1968) 830.Google Scholar
  3. 3.
    D. E. Green, J. Asai, R. A. Harris, and J. T. Penniston,Arch. Biochem. Biophys.,125 (1968) 684.PubMedGoogle Scholar
  4. 4.
    R. A. Harris, M. A. Asbell, W. W. Jolly, J. Asai, and D. E. Green,Arch. Biochem. Biophys.,132 (1969) 545.PubMedGoogle Scholar
  5. 5.
    R. A. Harris, C. H. Williams, M. Caldwell, D. E. Green, and E. Valdivia,Science,165 No. 3894 (1969) 700.PubMedGoogle Scholar
  6. 6.
    R. A. Harris, C. H. Williams, W. W. Jolly, and D. E. Green,Arch. Biochem. Biophys., (1969), in press.Google Scholar
  7. 7.
    D. C. Pease,Histological Techniques for Electron Microscopy, Academic Press, New York, 1964.Google Scholar
  8. 8.
    J. Brachet and A. E. Mirsky,The Cell, Vol. II, Chapter 5, Academic Press, New York, 1961.Google Scholar
  9. 9.
    K. R. Porter and M. A. Bonneville,An Introduction to the Fine Structure of Cells and Tissues, Lea and Febiger, Philadelphia, 1964.Google Scholar
  10. 10.
    H. Fernandez-Moran,Science,133 No. 3445 (1961) cover photo.Google Scholar
  11. 11.
    J. P. Revel, D. W. Fawcett, and C. W. Philpott,J. Cell Biol.,16 (1963) 187.PubMedGoogle Scholar
  12. 12.
    R. Luft, D. Ikkos, G. Palmieri, L. Ernster, and B. Afzelius,J. Clin. Investigations,41 (1962) 1776.Google Scholar
  13. 13.
    R. J. Stenger and D. Spiro, in:Ultrastructural Aspects of Disease, D. W. King (ed.), Hoeber Medical Division, Harper & Row, New York, 1966, p. 114.Google Scholar
  14. 14.
    D. B. Slautterback,J. Cell Biol.,24 (1965) 1.PubMedGoogle Scholar
  15. 15.
    D. W. Fawcett,An Atlas of Fine Structure: The Cell, Its Organelles and Inclusions, W. B. Saunders Co., Philadelphia, 1966, pp. 89, 91.Google Scholar
  16. 16.
    D. W. Fawcett and N. S. McNutt,J. Cell Biol.,42 (1969) 1.PubMedGoogle Scholar
  17. 17.
    W. C. Schneider,J. Biol. Chem.,176 (1966) 201.Google Scholar
  18. 18.
    E. F. Korman, A. Addink, T. Wakabayashi, and D. E. Green,J. Bioenergetics,1 (1970) 9.Google Scholar
  19. 19.
    F. Crane,Soil Science,85 (1958) 78.Google Scholar
  20. 20.
    D. W. Allmann, J. Munroe, T. Wakabayashi, R. A. Harris, and D. E. Green,J. Bioenergetics,1 (1970) 87.Google Scholar
  21. 21.
    J. Ross and W. J. Robison,J. Cell Biol.,40 (1969) 426.PubMedGoogle Scholar
  22. 22.
    G. D. Pappas and P. W. Brandt,J. Biophys. Biochem. Cytol.,6 (1959) 85.PubMedGoogle Scholar
  23. 23.
    G. Goglia,Acta Med. Romana, in press (1969).Google Scholar
  24. 24.
    F. S. Sjostrand,Electron Microscopy of Cells and Tissues, Vol. I, Academic Press, New York, 1967, p. 148.Google Scholar
  25. 25.
    C. D. Stoner and H. D. Sirak,Biochem. Biophys. Res. Communs.,35 (1969) 59.Google Scholar
  26. 26.
    C. R. Hackenbrock and A. I. Caplan,J. Cell Biol.,42 (1969) 221.PubMedGoogle Scholar
  27. 27.
    C. R. Hackenbrock,J. Cell Biol.,40 (1968) 269.Google Scholar
  28. 28.
    C. R. Hackenbrock,J. Cell Biol.,37 (1966) 345.Google Scholar
  29. 29.
    R. A. Goyer and R. Krall,J. Cell Biol.,41 (1969) 393.PubMedGoogle Scholar
  30. 30.
    R. A. Harris, D. L. Harris, and D. E. Green,Arch. Biochem. Biophys.,128 (1968) 219.PubMedGoogle Scholar
  31. 31.
    D. K. Jasper and J. R. Bronk,J. Cell Biol.,38 (1968) 277.PubMedGoogle Scholar
  32. 32.
    R. M. Meszler and J. F. Gennaro,Biology of the Reptile, Vol. 2, Carl Gans (ed.), Academic Press, London, 1969. p. 305.Google Scholar
  33. 33.
    R. E. Smith and D. J. Hoijer,Physiol. Review,42 (1962) 60.Google Scholar
  34. 34.
    R. J. Guillory and E. Racker,Biochim. Biophys. Acta,153 (1968) 490.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1970

Authors and Affiliations

  • Charles H. Williams
    • 1
  • William J. Vail
    • 1
  • Robert A. Harris
    • 1
  • Monya Caldwell
    • 1
  • David E. Green
    • 1
  • Enrique Valdivia
    • 2
  1. 1.Institute for Enzyme ResearchUniversity of WisconsinMadison
  2. 2.Department of PathologyUniversity of WisconsinMadison

Personalised recommendations