Monatshefte für Mathematik

, Volume 105, Issue 2, pp 161–164 | Cite as

Continuity of translation invariant linear functionals onC0(G) for certain locally compact groupsG

  • G. A. Willis


LetG be either a non-amenable group or a compact group such that the trivial representation ofG is not weakly contained in the regular representation ofG onL 2 0 (G). Then every translation invariant linear functional onC0(G) or onL p (G), where 1<p≤∞, is continuous.


Compact Group Linear Functional Regular Representation Trivial Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bourgain, J.: Translation invariant forms onL p(G), 1<p<∞. Preprint.Google Scholar
  2. [2]
    Drinfield, V. G.: Finitely additive measure onS 2 andS 3, invariant with respect to rotations. Functional Anal. Appl.18, 245–246 (1984).Google Scholar
  3. [3]
    Dunford, N., Schwartz, J. T.: Linear Operators I, New York: Interscience. 1957.Google Scholar
  4. [4]
    Greenleaf, F. P.: Invariant Means on Topological Groups. New York: Van Nostrand. 1969.Google Scholar
  5. [5]
    Johnson, B. E.: A proof of the translation invariant form conjecture forL 2(G). Bull. Sci. Math. (2)107, 301–310 (1983).Google Scholar
  6. [6]
    Margulis, G. A.: Some remarks on invariant means. Mh. Math.90 233–235 (1980).Google Scholar
  7. [7]
    Meisters, G. H.: Some problems and results on translation-invariant linear forms. Lect. Notes. Math. 975. Berlin-Heidelberg-New York: Springer. 1983.Google Scholar
  8. [8]
    Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. London: Oxford Univ. Press. 1968.Google Scholar
  9. [9]
    Rosenblatt, J. M.: Translation invariant linear forms onL p(G). Proc. Amer. Math. Soc.94, 226–228 (1985).Google Scholar
  10. [10]
    Saeki, S.: Discontinuous translation invariant functionals. Trans. Amer. Math. Soc.282, 403–414 (1984).Google Scholar
  11. [11]
    Schmidt, K.: Amenability, Kazhdan's propertyT, strong ergodicity and invariant means for ergodic group-actions. Ergodic Theory and Dynamical Systems1, 223–236 (1981).Google Scholar
  12. [12]
    Sullivan, D.: Forn>3 there is only one finitely-additive rotationally invariant measure on then-sphere defined on all Lebesgue measurable sets. Bull. Amer. Math. Soc.4, 121–123 (1981).Google Scholar
  13. [13]
    Willis, G. A.: Translation invariant functionals onL p(G) whenG is not amenable. J. Aust. Math. Soc. (Series A)41, 237–250 (1986).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. A. Willis
    • 1
    • 2
  1. 1.School of Mathematical SciencesFlinders University of South AustraliaBedford Park
  2. 2.Adelaide

Personalised recommendations