Acta Biotheoretica

, Volume 22, Issue 1, pp 34–43 | Cite as

Biological significance of molecular chirality in energy balance and metabolism

  • A. S. Garay
  • J. Czégé
  • L. Tolvaj
  • Matti Tóth
  • Margit Szabó
Article

Summary

In biological electron transport the spin, and thus the magnetic property of electrons, is neglected. Furthermore, no attention is paid to the fact that the great majority of biologically important molecules are chiral, and during excitation a magnetic moment is induced in them. It is shown, both theoretically and experimentally, that the magnetic moment of the electron and the magnetic transition moment of the optically active molecules may interact. The main consequences of such an interaction are a higher probability of the occurrence of optically active molecules in triplet states, and the polarization of transported electrons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkinazi, M. S., Dolidze, I. &V. A. Egorova, (1967). Photooxydation of tyrosine sensitized by chlorophyll derivates.-Biofysika12, p. 427–432.Google Scholar
  2. Beychock, S. (1966). Circular dichroism of biological macromolecules.-Science154, p. 1288–1299.Google Scholar
  3. Bovey, F. A. (1969). Polymer conformation and configuration.-New York & London, Acad. Press, 112 p.Google Scholar
  4. Brewster, J. H. (1967). Helix models of optical activity.-Topics in Stereochemistry2, p. 1–72.Google Scholar
  5. Davies, M. (1965). Some electrical and optical aspects of molecular behaviour.- Oxford, Pergamon Press, 145 p.Google Scholar
  6. Garay, A. S. (1968). Origin and role of optical isomery in life.-Nature219, p. 338–340.Google Scholar
  7. — (1970). Optical rotatory power and its biological significance.-Fizikai Szemle20, p. 106–116.Google Scholar
  8. — (1971). On the role of molecular chirality in biological electron transport and luminescence.-Life Sciences10, p. 1393–1398.Google Scholar
  9. Holden, M. (1962). Separation by paperchromatography of chlorophylls a and b and some of their breakdown products.-Biochem. biophys. Acta56, p. 378–379.Google Scholar
  10. Ke, B. (1965). Optical rotatory dispersion of chloroplast lamellae fragments.- Arch. Biochem. Biophys.112, p. 554–561.Google Scholar
  11. Moscowitz, A. (1960). Theory and analysis of rotatory dispersion curves.-In:C. Djerassi, Optical rotatory dispersion, p. 150.-New York, McGraw-Hill.Google Scholar
  12. Seely, G. R. (1966). Photochemistry of chlorophylls in vitro.-In:L. P. Vernon &G. R. Seely, ed., The chlorophylls, p. 523–568.-New York & London, Acad. Press.Google Scholar
  13. Tinoco Jr.,I. (1965). Absorption and rotation of polarized light by polymers.-In:B. Pullman &M. Weissbluth, ed., Molecular biophysics, p. 181.-New York & London, Acad. Press.Google Scholar
  14. Ulbricht, T. L. V. (1962). The optical asymmetry of metabolites.-In:M. Florkin &H. S. Mason, ed., Comparative biochemistry4, p. 1–25.-New York & London, Acad. Press.Google Scholar
  15. Wald, G. (1957). The origin of optical activity.-Ann. N.Y. Acad. Sci.69, p. 352–368.Google Scholar

Copyright information

© E. J. Brill 1973

Authors and Affiliations

  • A. S. Garay
    • 1
  • J. Czégé
    • 1
  • L. Tolvaj
    • 1
  • Matti Tóth
    • 1
  • Margit Szabó
    • 1
  1. 1.Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations