Topics in Catalysis

, Volume 2, Issue 1–4, pp 17–27 | Cite as

Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis

  • Enrique Iglesia
  • Stuart L. Soled
  • Joseph E. Baumgartner
  • Sebastian C. Reyes


CO diffusional restrictions decrease C5+ synthesis rates and selectivity within large (1–3 mm) catalyst pellets often required in Fischer-Tropsch (FT) synthesis reactors. Eggshell catalysts, where Co is located preferentially near outer pellet surfaces, reduce the severity of these transport restrictions and lead to higher synthesis rates and C5+ selectivity. Maximum C5+ selectivities occur on catalysts with intermediate shell thickness, within which transport restrictions limit the removal of reactive olefins but not the arrival of reactants at catalytic sites. A new synthetic technique leads to sharp distributions of active sites near outer pellet surfaces by controlling the rate of imbibition of cobalt nitrate melts. Also, slow reduction of the impregnated salt leads to moderate Co dispersions (0.05–0.10) even at high local Co loadings present within shell regions.


Fischer-Tropsch synthesis cobalt catalysts eggshell catalysts diffusional restrictions CO hydrogenation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Iglesia, S.L. Soled and R.A. Fiato, J. Catal. 137 (1992) 212.Google Scholar
  2. [2]
    R.J. Madon, S.C. Reyes and E. Iglesia, J. Phys. Chem. 95 (1991) 7795.Google Scholar
  3. [3]
    E. Iglesia, S.C. Reyes and S.L. Soled, in:Computer-Aided Design of Catalysts and Reactors, eds. E.R. Becker and C.J. Pereira (Dekker, New York, 1993) p. 199.Google Scholar
  4. [4]
    E. Iglesia, S.C. Reyes, R.J. Madon and S.L. Soled, in:Advances in Catalysis and Related Subjects, Vol. 39, eds. D.D. Eley, H. Pines and P.B. Weisz (Academic Press, New York, 1993) p. 239.Google Scholar
  5. [5]
    R.J. Madon, S.C. Reyes and E. Iglesia, in:Selectivity in Catalysis, ACS Symposium Series 517 eds. S.L. Suib and M.E. Davis (Am. Chem. Soc., Washington, 1992) p. 383.Google Scholar
  6. [6]
    R.W. Maatman and C.D. Prater, Ind. Eng. Chem. 49 (1957) 253.Google Scholar
  7. [7]
    W.E. Corbett and D. Luss, Chem. Eng. Sci. 29 (1974) 1473.Google Scholar
  8. [8]
    C.J. Pereira, G. Kim and L.L. Hegedus, Catal. Rev. Sci. Eng. 26 (1984) 583; J.E. Summers and J.L. Hegedus, J. Catal. 51 (1978) 185.Google Scholar
  9. [9]
    R.S. Dixit and L.L. Tavlarides, Chem. Eng. Sci. 37 (1982) 539; Ind. Eng. Chem. Proc. Des. Dev. 22 (1983) 1.Google Scholar
  10. [10]
    R.C. Everson, E.T. Woodburn and A.R.M. Kirk, J. Catal. 53 (1978) 186.Google Scholar
  11. [11]
    A. Neimark, A. Khelfez and V. Fenelonov, Ind. Eng. Chem. Prod. Res. Dev. 20 (1981) 439.Google Scholar
  12. [12]
    M.F.M. Post and S.T. Sic, Eur. Patent Appl. 174,696 (1985); W.A. van Erp, J.M. Nanne and M.F.M. Post, US Patent 4,637,993 (1987).Google Scholar
  13. [13]
    E. Iglesia, H. Vroman, S.L. Soled, J.E. Baumgartner and R.A. Fiato, US Patent 5,036,032 (1991); Eur. Patent Appl. 313,466 (1991); Eur. Patent Appl. 434,284 (1991).Google Scholar
  14. [14]
    E. Iglesia, S.L. Soled and R.A. Fiato, US Patent 4,738,948 (1988); Eur. Patent Appl. 363,537 (1988).Google Scholar
  15. [15]
    E. Iglesia, S.L. Soled, J.E. Baumgartner and S.C. Reyes, J. Catal., submitted.Google Scholar
  16. [16]
    E. Iglesia, S.L. Soled and R.A. Fiato, J. Catal., in press.Google Scholar
  17. [17]
    E. Washburn, Phys. Rev. 17 (1921) 273.Google Scholar

Copyright information

© J. C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Enrique Iglesia
    • 1
  • Stuart L. Soled
    • 2
  • Joseph E. Baumgartner
    • 2
  • Sebastian C. Reyes
    • 2
  1. 1.Department of Chemical EngineeringUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Corporate Research LaboratoriesExxon Research and Engineering Co.AnnandaleUSA

Personalised recommendations