Skip to main content
Log in

Crystallization in unstretched and in stretched rubber and its thermodynamic description

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermodynamics of heat- and strain-induced crystallization of networks is presented which allows the description of both crystallization modes. The network is treated as a eutectoid copolymer. Chains of different length are components representing crystallizable “c-sequences”. For thermodynamic reasons, extended c-sequence crystals are formed in any case. It is the essential step to combine the van der Waals theory of networks and the theory of eutectoid copolymers. The solubility in the solid seems to be increased in presence of a mechanical field. The typical hysteresis in stress-strain cycles is then understandable only if “quasi-static constraints” are introduced. These constraints are responsible for the observation that strain-induced crystallization is enforced under large overdrawings. Melting during retraction seems to run under invariant constraints. With the aid of this approach, it is possible to describe the work and the heat exchanged during stress-strain cycles of natural rubber measured in a stretching micro-calorimeter. The origins of the constraints are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flory PJ (1947) Chem Phys 15:3976

    Google Scholar 

  2. Treloar LRG (1974) The Physics of Rubber Elasticity, 3rd Ed., Clarendon Press, Oxford

    Google Scholar 

  3. Mandelkern L (1964) Crystallization of Polymers, McGraw, New York

    Google Scholar 

  4. Göritz D, Müller FH, Sietz W (1977) Prog Coll Polym Sci 62:114

    Google Scholar 

  5. Mitchell JC, Meyer DJ (1968) J Polym Sci A-2 6:1689

    Article  Google Scholar 

  6. Kawai H, Oda T, Tomita S, Furata I (1968) 5th Int Congr Rheology, Kyoto

  7. Yamamoto M, White J (1971) J Polym Sci A2 9:1399

    Article  Google Scholar 

  8. Kim Hg, Mandelkern L (1968) I Polym Sci A2 16:181

    Article  Google Scholar 

  9. Krigbaum WR, Dawkins JV, Via HG, Balta YG (1966) J Polym Sci A 2:475

    Google Scholar 

  10. Oth JF, Flory PJ (1958) J Am Chem Soc 80:1297

    Article  Google Scholar 

  11. Gent AN (1954) Trans Farad Soc 50:521

    Article  Google Scholar 

  12. Holl B, Kilian HG, Yeh GSY (1985) Coll Polym Sci 263:313

    Article  Google Scholar 

  13. Mukherji S, Woodward AC (1984) J Polym Sci Polym Phys Ed 22:793

    Article  Google Scholar 

  14. Pei-guo Wang, Woodward C (1987) Macromol 20:1818

    Article  Google Scholar 

  15. Gavish M, Corrigan J, Woodward AC (1988) Macromol 21:2079

    Article  Google Scholar 

  16. Candia T, Romano G, Russo R (1987) J Appl Polym Sci, 34:211

    Article  Google Scholar 

  17. Allegra G, Bruzzone M (1983) Macromol 16:1167

    Article  Google Scholar 

  18. Siesler H, Perl W (1988) Mikrochim Acta I:323

    Article  Google Scholar 

  19. Smith KJ (1974) Polym Eng Sci 16:168

    Article  Google Scholar 

  20. Burfield D, Tanaka Y (1985) Proc Int Rubber Conf 140

  21. Kilian HG (1986) Progr Coll Polym Sci 72:60

    Google Scholar 

  22. Kilian HG, Unseld K, Jäger E, Müller J, Jungnickel B (1985) Coll Polym Sci 263:607

    Google Scholar 

  23. Glenz W, Kilian HG, Klattenhoff D, Stracke F, (1977) Polymer 18:685

    Article  Google Scholar 

  24. Rosenberger R, Asbach GI, Kilian HG, Wilke W, Rodriguéz M (1988) Macromol Chem 189:2627

    Article  Google Scholar 

  25. Heise B, Kilian HG, Schmidt H (1981) Coll Polym Sci 259:611

    Google Scholar 

  26. Kilian HG (1988) Progr Coll Polym Sci 78:161

    Google Scholar 

  27. Kilian HG (1981) Polymer 22:209

    Article  Google Scholar 

  28. Kilian HG (1987) Progr Coll Polym Sci 75:55

    Article  Google Scholar 

  29. Vilgis T, Kilian HG (1986) Coll Polym Sci 264:137

    Article  Google Scholar 

  30. Eisele K, Heise B, Kilian HG, Pietralla M (1981) Angew Makromol Chem, 100 (1981), 67

    Article  Google Scholar 

  31. Kilian HG (1989) Macromol Chem, Macromol Symp 26:411

    Google Scholar 

  32. Holl B, Thesis, University Ulm, 1987

  33. Hosemann R, Baggchi SN (1962) Direct Analysis of Diffraction b Matter, North-Holland Publ Comp, Amsterdam

    Google Scholar 

  34. Wilke W, Martis K, Coll Polym Sci, 252(1974), 718

    Google Scholar 

  35. Kilian HG, Unseld K, Jaeger E, Jungnickel B (1985) Coll Polym Sci 263:607

    Google Scholar 

  36. Enderle HF, Kilian HG (1987) Prog Coll Polym Sci 75:55

    Article  Google Scholar 

  37. Ambacher H, Enderle HF, Kilian HG, Sauter A (1989) Prog Coll Polym Sci, 80:209

    Google Scholar 

  38. Kilian HG, Unseld K (1986) Coll Polym Sci 264:9.

    Article  Google Scholar 

  39. Kilian HG, Enderle HF, Unseld K, (1986) Coll Polym Sci 264:866

    Article  Google Scholar 

  40. Kilian HG (1989) Makrom Chem, in press

  41. Green AG, Atkins JC (1970) Large Elastic Deformations, Claredon Press, Oxford

    Google Scholar 

  42. Vilgis T, Kilian HG (1986) Coll Polym Sci 264:137

    Article  Google Scholar 

  43. Zrinyi M, Kilian HG, Horkay F (1989) Coll Polym Sci 267:311

    Article  Google Scholar 

  44. Callen HB (1960) Thermodynamics, Wiley and Sons, New York-London-Sydney

    Google Scholar 

  45. Keller JU (1977) Thermodynamik der irreversiblen Prozesse, Teil 1, Thermostatik und Grundbegriffe, Walter de Gruyter, Berlin-New York

    Google Scholar 

  46. Guggenheim EA (1967) Thermodynamics, North-Holland Pub Comp, Amsterdam

    Google Scholar 

  47. Flory PJ (1969) Statistical Mechanics of Chain Molecules, Interscience, New York

    Google Scholar 

  48. Volkenstein MV (1963) Configurational statistics of Polymeric Chains, Interscience Publ, John Wiley, New York-London

    Google Scholar 

  49. Dusek K, Prins W (1969) Adv Polym Sci 6:1

    Google Scholar 

  50. Müller FH, Engelter A (1957) Koll-Z u Z Polym, 152:15

    Google Scholar 

  51. Engelter A, Müller FH (1958) Koll-Z u Z Polym 157:89

    Google Scholar 

  52. Göritz D, Müller FH (1973) Koll-Z u Z Polym 251:892

    Google Scholar 

  53. Kilian HG, Höhne G, Trögerle P, Ambacher H (1984) J Polym Sci Polym Symp, 77:221

    Google Scholar 

  54. Ambacher H (1985) Diplomarbeit, Universität Ulm

  55. Göritz D, (1982) Coll Polym Sci 26:193

    Google Scholar 

  56. Godovsky YK (1977) Vysokomol Soed A19:2359

    Google Scholar 

  57. Godovsky YK (1986) Adv Polym Sci 76:31

    Google Scholar 

  58. Kilian HG (1981) Coll Polym Sci 259:75

    Google Scholar 

  59. Kraus G (1971) Adv Polym Sci 8:155

    Google Scholar 

  60. Kraus G (1971) Rubber Chem Tech 44:99

    Google Scholar 

  61. Mullins L, Tobin NR (1965) J Appl Polym Sci 9:2993

    Article  Google Scholar 

  62. Rigbi Z (1980) Adv polym Sci 36:21

    Google Scholar 

  63. Ambacher H, Enderle FH, Kilian HG, Sauter A (1989) Prog Coll Polym Sci, in press

  64. Treloar LRG (1947) Trans Faraday Soc 43:277

    Article  Google Scholar 

  65. Stein RS, Wilkes GL in (1975) “Structure and Properties of Oriented Polymers” ed by Ward IM, Appl Sci Publ, London, page 57

    Google Scholar 

  66. Pietralla M, Kilian HG (1980) J Polym Sci, Phys Ed 18:285

    Google Scholar 

  67. Folkes MJ, Keller A (1971) Polymer 12:222

    Article  Google Scholar 

  68. Hoshino S, Powers J, LeGrand DG, Kawai H, Stein RS (1962) J Polym Sci 58:185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holl, B., Kilian, H.G. & Schenk, H. Crystallization in unstretched and in stretched rubber and its thermodynamic description. Colloid & Polymer Sci 268, 205–221 (1990). https://doi.org/10.1007/BF01490245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01490245

Key words

Navigation