Monatshefte für Mathematik

, Volume 102, Issue 2, pp 155–167 | Cite as

Low-discrepancy point sets

  • Harald Niederreiter


Various point sets in thes-dimensional unit cube with small discrepancy are constructed.


Small Discrepancy Unit Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Faure, H.: Discrépance de suites associées à un système de numération (en dimensions). Acta Arith.41, 337–351 (1982).Google Scholar
  2. [2]
    Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl.54, 325–333 (1961).Google Scholar
  3. [3]
    Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Mh. Math.66, 140–151 (1962).Google Scholar
  4. [4]
    Hlawka, E.: Uniform distribution modulo 1 and numerical analysis. compositio Math.16, 92–105 (1964).Google Scholar
  5. [5]
    Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical analysis. Berlin-Heidelberg-New York: Springer. 1981.Google Scholar
  6. [6]
    Korobov, N.M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR124, 1207–1210 (1959) (Russian)Google Scholar
  7. [7]
    Larcher, G.: On the distribution of sequences connected with good lattice points. Mh. Math.101, 135–150 (1986).Google Scholar
  8. [8]
    Lidl, R., Niederreiter, H.: Finite fields. Reading: Addison-Wesley. 1983.Google Scholar
  9. [9]
    Niederreiter, H.: Pseudo-random numbers and optimal coefficients. Adv. in Math.26, 99–181 (1977).Google Scholar
  10. [10]
    Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc.84, 957–1041 (1978).Google Scholar
  11. [11]
    Niederreiter, H.: Multidimensional numerical integration using pseudorandom numbers. Proc. Numerical Methods for Stochastic Optimization (Laxenburg, 1983). Math. Programming Study27, 17–38. Amsterdam: North-Holland. (1986).Google Scholar
  12. [12]
    Niederreiter, H.: A statistical analysis of generalized feedback shift register pseudorandom number generators. SIAM J. Sci. Statist. Comp. (To appear.)Google Scholar
  13. [13]
    Niederreiter, H.: Pseudozufallszahlen und die Theorie der Gleichverteilung. Sitzungsber. Österr. akad. Wiss. Math.-Naturwiss. Kl. (To appear.)Google Scholar
  14. [14]
    Sobol', I.M.: Multidimensional Quadrature Formulas and Haar Functions. Moscow: Nauka. 1969. (Russian)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Harald Niederreiter
    • 1
  1. 1.Kommission für MathematikÖsterreichische Akademie der WissenschaftenWienAustria

Personalised recommendations